Learning visual saliency by combining feature maps in a nonlinear manner using AdaBoost

被引:63
作者
Zhao, Qi [1 ]
Koch, Christof [1 ,2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Allen Inst Brain Sci, Seattle, WA USA
来源
JOURNAL OF VISION | 2012年 / 12卷 / 06期
基金
新加坡国家研究基金会;
关键词
AdaBoost; computational saliency model; feature integration; EYE-MOVEMENTS; FEATURE COMBINATION; FEATURE-INTEGRATION; FIXATION SELECTION; ATTENTION; CONTRAST; ALGORITHMS; OBJECT; STATISTICS; STRATEGIES;
D O I
10.1167/12.6.22
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
To predict where subjects look under natural viewing conditions, biologically inspired saliency models decompose visual input into a set of feature maps across spatial scales. The output of these feature maps are summed to yield the final saliency map. We studied the integration of bottom-up feature maps across multiple spatial scales by using eye movement data from four recent eye tracking datasets. We use AdaBoost as the central computational module that takes into account feature selection, thresholding, weight assignment, and integration in a principled and nonlinear learning framework. By combining the output of feature maps via a series of nonlinear classifiers, the new model consistently predicts eye movements better than any of its competitors.
引用
收藏
页数:15
相关论文
共 73 条
  • [1] [Anonymous], 2008, PROC INT CONF PATTER
  • [2] [Anonymous], EUR C COMP VIS
  • [3] [Anonymous], INT C MACH LEARN
  • [4] [Anonymous], 2009, Vision Res., DOI [DOI 10.1016/J.VISRES.2008.09.007, 10.1016/j.visres.2008.09.007]
  • [5] [Anonymous], P BRAIN INSP COGN SY
  • [6] Esaliency (Extended Saliency): Meaningful Attention Using Stochastic Image Modeling
    Avraham, Tamar
    Lindenbaum, Michael
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (04) : 693 - 708
  • [7] High frequency edges (but not contrast) predict where we fixate: A Bayesian system identification analysis
    Baddeley, Roland J.
    Tatler, Benjamin W.
    [J]. VISION RESEARCH, 2006, 46 (18) : 2824 - 2833
  • [8] BAHILL AT, 1975, INVEST OPHTH VISUAL, V14, P468
  • [9] Saliency, attention, and visual search: An information theoretic approach
    Bruce, Neil D. B.
    Tsotsos, John K.
    [J]. JOURNAL OF VISION, 2009, 9 (03):
  • [10] Faces and text attract gaze independent of the task: Experimental data and computer model
    Cerf, Moran
    Frady, E. Paxon
    Koch, Christof
    [J]. JOURNAL OF VISION, 2009, 9 (12):