Response control of a transmission tower-line system under wind excitations by electromagnetic inertial mass dampers

被引:2
|
作者
Song, Xinxin [1 ]
Chen, Yanzhou [2 ]
Bo, Chen [1 ]
Wu, Jingbo [1 ]
机构
[1] Wuhan Univ Technol, Sch Civil Engn & Architecture, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[2] Cent South Architectural Design Inst Co Ltd, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
wind-induced response; electromagnetic inertial mass damper; transmission tower-line system; vibration control; energy response; VIBRATION CONTROL; SEISMIC CONTROL; MOTION; CABLE;
D O I
10.1177/13694332221135897
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural vibration of transmission tower-line systems under wind excitations may induce damage and even destruction of the overall system. The control of transmission towers is conducted in the past decades by dynamic absorbers and dampers. Recently, a new type of passive control device, namely electromagnetic inertial mass dampers (EIMD), has been proposed and applied in structural vibration control However, the EIMD has not yet been systematically investigated in the vibration control of power transmission towers. In this regard, the vibration control of wind-disturbed transmission towers using EIMDs is conducted. The analytical model of a real tower-line system is established in line with the Hamilton principles. The response control approach using EIMDs is proposed and the control performance of different methods is compared in both the time and frequency domain. Detailed parametric studies are carried out to examine the effects of electromagnetic damping, inertial mass, and wind load intensity on EIMD performance. The assessment of the system energy responses without and with control is also conducted. The made observations demonstrate that the application of EIMDs can significantly reduce the structural dynamic responses under wind loading and the control performance of the EIMDs is quite robust and versatile under different wind load intensities.
引用
收藏
页码:3334 / 3348
页数:15
相关论文
共 50 条
  • [31] Study on Stability of Transmission Tower-Line System under a Downburst
    Zhong, Yongli
    Li, Shun
    Yan, Zhitao
    Liu, Xinpeng
    Luo, Jun
    Jin, Weichen
    BUILDINGS, 2022, 12 (09)
  • [32] Fragility analysis of a long-span transmission tower-line system under wind loads
    Tian, Li
    Zhang, Xin
    Fu, Xing
    ADVANCES IN STRUCTURAL ENGINEERING, 2020, 23 (10) : 2110 - 2120
  • [33] A Bidirectional Pounding Tuned Mass Damper and Its Application to Transmission Tower-Line Systems under Seismic Excitations
    Tian, Li
    Rong, Kunjie
    Bi, Kaiming
    Zhang, Peng
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2019, 19 (06)
  • [34] Wind-Induced Response Analysis of the Transmission Tower-Line System Considering the Joint Effect
    Li, Jia-Xiang
    Zhang, Chao
    Fu, Xing
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (22)
  • [35] STUDY ON THE SEISMIC MITIGATION PERFORMANCE OF PARTICLE DAMPERS APPLIED TO TRANSMISSION TOWER-LINE SYSTEM
    Lu Z.
    Shen Y.-L.
    Tan Q.-H.
    Rong K.-J.
    Tian L.
    Gongcheng Lixue/Engineering Mechanics, 2024, 41 (07): : 9 - 18
  • [36] Wind induced response numerical simulation of a transmission tower-line system in real mountainous terrain
    Liu M.
    Lü H.
    Luo K.
    Wang M.
    Fan J.
    Chi W.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 232 - 239
  • [37] Study of Wind Induced Vibration of Transmission Power Tower-line System
    Yang, Weijun
    Liang, Longteng
    APPLIED MECHANICS, MATERIALS AND MANUFACTURING IV, 2014, 670-671 : 1125 - 1129
  • [38] Wind fragility assessment and sensitivity analysis for a transmission tower-line system
    Wang, Jia
    Li, Hong-Nan
    Fu, Xing
    Dong, Zhi-Qian
    Sun, Zhi-Guo
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 231
  • [39] Control of Wind-Induced Vibration of Transmission Tower-Line System by Using a Spring Pendulum
    Zhang, Peng
    Ren, Liang
    Li, Hongnan
    Jia, Ziguang
    Jiang, Tao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [40] Wind-induced vibration control of transmission tower-line system by using passive devices
    Zheng, Jin
    Chen, Bo
    Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, 2007, 29 (12): : 80 - 83