Matrix product codes over finite commutative Frobenius rings

被引:47
作者
Fan, Yun [1 ]
Ling, San [2 ]
Liu, Hongwei [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Nanyang Technol Univ, Sch Phys Math Sci, Div Math Sci, Singapore 637616, Singapore
关键词
Matrix product code; Frobenius ring; Minimum distance; Dual code; Quasi-cyclic code; PROPAGATION RULE; ALGEBRAIC STRUCTURE; LINEAR CODES;
D O I
10.1007/s10623-012-9726-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Properties of matrix product codes over finite commutative Frobenius rings are investigated. The minimum distance of matrix product codes constructed with several types of matrices is bounded in different ways. The duals of matrix product codes are also explicitly described in terms of matrix product codes.
引用
收藏
页码:201 / 227
页数:27
相关论文
共 18 条
[1]   Matrix-product codes over Fq [J].
Blackmore, T ;
Norton, GH .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 12 (06) :477-500
[2]   COSET CODES .2. BINARY LATTICES AND RELATED CODES [J].
FORNEY, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :1152-1187
[3]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[4]  
Hernando F., 2012, LIST DECODING MATRIX
[5]  
Hernando F., 2011, DECODING MATRIX PROD
[6]   NEW LINEAR CODES FROM MATRIX-PRODUCT CODES WITH POLYNOMIAL UNITS [J].
Hernando, Fernando ;
Ruano, Diego .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2010, 4 (03) :363-367
[7]   Construction and decoding of matrix-product codes from nested codes [J].
Hernando, Fernando ;
Lally, Kristine ;
Ruano, Diego .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2009, 20 (5-6) :497-507
[8]   On the algebraic structure of quasi-cyclic codes II:: Chain rings [J].
Ling, S ;
Solé, P .
DESIGNS CODES AND CRYPTOGRAPHY, 2003, 30 (01) :113-130
[9]   On the algebraic structure of quasi-cyclic codes I:: Finite fields [J].
Ling, S ;
Solé, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2751-2760
[10]   A generalization of Niederreiter-Xing's propagation rule and its commutativity with duality [J].
Martínez-Moro, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (04) :701-702