Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challenges

被引:38
|
作者
Castelletto, N. [1 ]
Gambolati, G. [1 ]
Teatini, P. [1 ]
机构
[1] Univ Padua, Dept Civil Environm & Architectural Engn, I-35121 Padua, PD, Italy
关键词
DEEP SALINE AQUIFERS; LAND SUBSIDENCE; FLUID-FLOW; INJECTION; STORAGE; PRESSURE; BASIN; SEISMICITY; PREDICTION; DYNAMICS;
D O I
10.1002/jgrb.50180
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sequestration of large amounts of CO2 within deep underground reservoirs has been proposed as a potential approach for reducing atmospheric emissions of greenhouse gases. A CO2 sequestration project should address the associated environmental and safety issues and, in this respect, the importance of geomechanics has recently been widely recognized. Geomechanics is even more important when fluid injection is planned in faulted reservoirs. How much CO2 can be safely injected into multi-compartment reservoirs? Are geomechanical constraints more restrictive than flow-dynamic constraints? These and other questions are addressed in the present study using a three-dimensional finite element-interface element geomechanical model. We simulate the possible mechanical failure in both the injected formation and the caprock, the fault/thrust reactivation, and the ground surface displacement in a faulted reservoir of the offshore northern Italy, where seismic surveys provided an accurate characterization of the faulted geological structure. Based on reliable petrophysical/geomechanical properties from well logs and pore overpressure as predicted by a fluid-dynamic model, the results show that the injection of 1 x 10(6) ton/a of CO2 may be performed over a few years only. Thereafter, part of the injected formation fails by shear stress. A number of parametric scenarios are investigated to address the major uncertainties on the geomechanical response to CO2 injection. The modeling outcome suggests that shear failure and faults/thrusts reactivation can occur much before attaining the hydraulic fracturing pressure, hence representing two major constraints for a safe and permanent containment.
引用
收藏
页码:2417 / 2428
页数:12
相关论文
共 50 条
  • [1] Some geomechanical aspects of geological CO2 sequestration
    Orlic, Bogdan
    KSCE JOURNAL OF CIVIL ENGINEERING, 2009, 13 (04) : 225 - 232
  • [2] Some geomechanical aspects of geological CO2 sequestration
    Bogdan Orlic
    KSCE Journal of Civil Engineering, 2009, 13 : 225 - 232
  • [3] Will the future of shale reservoirs lie in CO2 geological sequestration?
    Zhan Jie
    Chen ZhangXin
    Zhang Ying
    Zheng ZiGang
    Deng Qi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (07) : 1154 - 1163
  • [4] An Overview of Geological CO2 Sequestration in Oil and Gas Reservoirs
    Askarova, Aysylu
    Mukhametdinova, Aliya
    Markovic, Strahinja
    Khayrullina, Galiya
    Afanasev, Pavel
    Popov, Evgeny
    Mukhina, Elena
    ENERGIES, 2023, 16 (06)
  • [5] Will the future of shale reservoirs lie in CO2 geological sequestration?
    ZHAN Jie
    CHEN ZhangXin
    ZHANG Ying
    ZHENG ZiGang
    DENG Qi
    Science China(Technological Sciences), 2020, 63 (07) : 1154 - 1163
  • [6] Will the future of shale reservoirs lie in CO2 geological sequestration?
    Jie Zhan
    ZhangXin Chen
    Ying Zhang
    ZiGang Zheng
    Qi Deng
    Science China Technological Sciences, 2020, 63 : 1154 - 1163
  • [7] Geomechanical challenges during geological CO2 storage: A review
    Song, Youngsoo
    Jun, Sungjun
    Na, Yoonsu
    Kim, Kyuhyun
    Jang, Youngho
    Wang, Jihoon
    CHEMICAL ENGINEERING JOURNAL, 2023, 456
  • [8] Geomechanical Risk Assessments for CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs
    Fang, Z.
    Khaksar, A.
    Gibbons, K.
    SPE DRILLING & COMPLETION, 2012, 27 (03) : 367 - 381
  • [9] Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs
    Hawkes, CD
    Bachu, S
    McLellan, PJ
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2005, 44 (10): : 52 - 61
  • [10] Geomechanical aspects of CO2 sequestration and modeling
    Rutqvist, Jonny
    HARMONISING ROCK ENGINEERING AND THE ENVIRONMENT, 2012, : 1803 - 1808