Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

被引:34
作者
Song, Dong [1 ,3 ]
Marmarelis, Vasilis Z. [1 ,3 ]
Berger, Theodore W. [1 ,2 ,3 ]
机构
[1] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Program Neurosci, Los Angeles, CA 90089 USA
[3] Univ So Calif, Ctr Neural Engn, Los Angeles, CA 90089 USA
关键词
Facilitation; Depression; Nonlinear modeling; Poisson random train; Volterra kernels; NONLINEAR-SYSTEMS ANALYSIS; FROG NEUROMUSCULAR-JUNCTION; PAIRED-PULSE DEPRESSION; PATH-DENTATE PROJECTION; TRANSMITTER RELEASE; QUANTITATIVE DESCRIPTION; RECEPTOR DESENSITIZATION; NEUROTRANSMITTER RELEASE; PRESYNAPTIC TERMINALS; DYNAMIC SYNAPSES;
D O I
10.1007/s10827-008-0097-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input-output data. Results show that the non-parametric models accurately and efficiently replicate the input-output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 59 条
  • [1] Abbott LF, 1997, SCIENCE, V275, P220, DOI 10.1126/science.275.5297.221
  • [2] [Anonymous], 2004, NONLINEAR DYNAMIC MO
  • [3] [Anonymous], 1990, PROG BRAIN RES
  • [4] Brain-implantable biomimetic electronics as the next era in neural prosthetics
    Berger, TW
    Baudry, M
    Brinton, RD
    Liaw, JS
    Marmarelis, VZ
    Park, AY
    Sheu, BJ
    Tanguay, AR
    [J]. PROCEEDINGS OF THE IEEE, 2001, 89 (07) : 993 - 1012
  • [5] SINGLE-UNIT ANALYSIS OF DIFFERENT HIPPOCAMPAL CELL-TYPES DURING CLASSICAL-CONDITIONING OF RABBIT NICTITATING-MEMBRANE RESPONSE
    BERGER, TW
    RINALDI, PC
    WEISZ, DJ
    THOMPSON, RF
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1983, 50 (05) : 1197 - 1219
  • [6] NONLINEAR-SYSTEMS ANALYSIS OF THE HIPPOCAMPAL PERFORANT PATH-DENTATE PROJECTION .2. EFFECTS OF RANDOM IMPULSE TRAIN STIMULATION
    BERGER, TW
    ERIKSSON, JL
    CIAROLLA, DA
    SCLABASSI, RJ
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1988, 60 (03) : 1077 - 1094
  • [7] NONLINEAR-SYSTEMS ANALYSIS OF THE HIPPOCAMPAL PERFORANT PATH-DENTATE PROJECTION .3. COMPARISON OF RANDOM TRAIN AND PAIRED IMPULSE STIMULATION
    BERGER, TW
    ERIKSSON, JL
    CIAROLLA, DA
    SCLABASSI, RJ
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1988, 60 (03) : 1095 - 1109
  • [8] A BIOLOGICALLY-BASED MODEL OF FUNCTIONAL-PROPERTIES OF THE HIPPOCAMPUS
    BERGER, TW
    CHAUVET, G
    SCLABASSI, RJ
    [J]. NEURAL NETWORKS, 1994, 7 (6-7) : 1031 - 1064
  • [9] DEPRESSION OF TRANSMITTER RELEASE AT NEUROMUSCULAR JUNCTION OF FROG
    BETZ, WJ
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1970, 206 (03): : 629 - &
  • [10] Bishop Christopher M, 1995, Neural networks for pattern recognition