Elimination for Coefficients of Special Characteristic Polynomials

被引:3
作者
Plesken, W. [1 ]
Robertz, D. [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl B Math, D-52062 Aachen, Germany
关键词
Characteristic polynomial; Kronecker product; elimination; Janet bases;
D O I
10.1080/10586458.2008.10128874
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Computing the relations for the coefficients satisfied by the characteristic polynomial of the Kronecker product of a general n x n matrix by a general m x m matrix leads to an elimination problem that is already difficult for small values of n and m. In this article we focus on the problems for (n, m) epsilon {(2, 3), (2, 4), (3, 3)} and use these problems for developing and testing a new elimination technique called elimination by degree steering.
引用
收藏
页码:499 / 510
页数:12
相关论文
共 13 条
[1]  
[Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
[2]  
BLINKOV YA, 2007, GINV PROJECT
[3]  
Blinkov Yu. A., 2003, P COMP ALG SCI COMP, P31
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Gerdt VP, 2005, NATO SC S SS III C S, V196, P199
[6]  
Gerdt VP, 2005, LECT NOTES COMPUT SC, V3718, P184
[7]  
Gerdt VP, 2001, COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, P249
[8]   On the tensor product of polynomials over a ring [J].
Glasby, SP .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 :307-324
[9]  
Greuel G. M., 2005, SINGULAR 3 0 COMPUTE
[10]   Recognising tensor products of matrix groups [J].
LeedhamGreen, CR ;
OBrien, EA .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1997, 7 (05) :541-559