Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator

被引:17
作者
An, W. [1 ]
Zhou, M. [1 ]
Vafaei-Najafabadi, N. [1 ]
Marsh, K. A. [1 ]
Clayton, C. E. [1 ]
Joshi, C. [1 ]
Mori, W. B. [1 ,2 ]
Lu, W. [2 ,3 ]
Adli, E. [4 ,5 ]
Corde, S. [5 ]
Litos, M. [5 ]
Li, S. [5 ]
Gessner, S. [5 ]
Frederico, J. [5 ]
Hogan, M. J. [5 ]
Walz, D. [5 ]
England, J. [5 ]
Delahaye, J. P. [5 ]
Muggli, P. [6 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Tsinghua Univ, Beijing 100084, Peoples R China
[4] Univ Oslo, Dept Phys, N-0316 Oslo, Norway
[5] SLAC Natl Accelerator Lab, Menlo Pk, CA 90309 USA
[6] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
来源
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS | 2013年 / 16卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevSTAB.16.101301
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Strategies for mitigating ionization-induced beam head erosion in an electron-beam-driven plasma wakefield accelerator (PWFA) are explored when the plasma and the wake are both formed by the transverse electric field of the beam itself. Beam head erosion can occur in a preformed plasma because of a lack of focusing force from the wake at the rising edge (head) of the beam due to the finite inertia of the electrons. When the plasma is produced by field ionization from the space charge field of the beam, the head erosion is significantly exacerbated due to the gradual recession (in the beam frame) of the 100% ionization contour. Beam particles in front of the ionization front cannot be focused (guided) causing them to expand as in vacuum. When they expand, the location of the ionization front recedes such that even more beam particles are completely unguided. Eventually this process terminates the wake formation prematurely, i.e., well before the beam is depleted of its energy. Ionization-induced head erosion can be mitigated by controlling the beam parameters (emittance, charge, and energy) and/or the plasma conditions. In this paper we explore how the latter can be optimized so as to extend the beam propagation distance and thereby increase the energy gain. In particular we show that, by using a combination of the alkali atoms of the lowest practical ionization potential (Cs) for plasma formation and a precursor laser pulse to generate a narrow plasma filament in front of the beam, the head erosion rate can be dramatically reduced. Simulation results show that in the upcoming "two-bunch PWFA experiments" on the FACET facility at SLAC national accelerator laboratory the energy gain of the trailing beam can be up to 10 times larger for the given parameters when employing these techniques. Comparison of the effect of beam head erosion in preformed and ionization produced plasmas is also presented.
引用
收藏
页数:8
相关论文
共 13 条
  • [1] An improved iteration loop for the three dimensional quasi-static particle-in-cell algorithm: QuickPIC
    An, Weiming
    Decyk, Viktor K.
    Mori, Warren B.
    Antonsen, Thomas M., Jr.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 165 - 177
  • [2] Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator
    Blumenfeld, Ian
    Clayton, Christopher E.
    Decker, Franz-Josef
    Hogan, Mark J.
    Huang, Chengkun
    Ischebeck, Rasmus
    Iverson, Richard
    Joshi, Chandrashekhar
    Katsouleas, Thomas
    Kirby, Neil
    Lu, Wei
    Marsh, Kenneth A.
    Mori, Warren B.
    Muggli, Patric
    Oz, Erdem
    Siemann, Robert H.
    Walz, Dieter
    Zhou, Miaomiao
    [J]. NATURE, 2007, 445 (7129) : 741 - 744
  • [3] Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators
    Bruhwiler, DL
    Dimitrov, DA
    Cary, JR
    Esarey, E
    Leemans, W
    Giacone, RE
    [J]. PHYSICS OF PLASMAS, 2003, 10 (05) : 2022 - 2030
  • [4] Plasma wakefield acceleration experiments at FACET
    Hogan, M. J.
    Raubenheimer, T. O.
    Seryi, A.
    Muggli, P.
    Katsouleas, T.
    Huang, C.
    Lu, W.
    An, W.
    Marsh, K. A.
    Mori, W. B.
    Clayton, C. E.
    Joshi, C.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [5] QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas
    Huang, C.
    Decyk, V. K.
    Ren, C.
    Zhou, M.
    Lu, W.
    Mori, W. B.
    Cooley, J. H.
    Antonsen, T. M., Jr.
    Katsouleas, T.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (02) : 658 - 679
  • [6] High energy density plasma science with an ultrarelativistic electron beam
    Joshi, C
    Blue, B
    Clayton, CE
    Dodd, E
    Huang, C
    Marsh, KA
    Mori, WB
    Wang, S
    Hogan, MJ
    O'Connell, C
    Siemann, R
    Watz, D
    Muggli, P
    Katsouleas, T
    Lee, S
    [J]. PHYSICS OF PLASMAS, 2002, 9 (05) : 1845 - 1855
  • [7] Nonlinear theory for relativistic plasma wakefields in the blowout regime
    Lu, W
    Huang, C
    Zhou, M
    Mori, WB
    Katsouleas, T
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (16)
  • [8] Photo-ionized lithium source for plasma accelerator applications
    Muggli, P
    Marsh, KA
    Wang, S
    Clayton, CE
    Lee, S
    Katsouleas, TC
    Joshi, C
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1999, 27 (03) : 791 - 799
  • [9] Plasma production via field ionization
    O'Connell, C. L.
    Barnes, C. D.
    Decker, F. -J.
    Hogan, M. J.
    Iverson, R.
    Krejcik, P.
    Siemann, R.
    Walz, D. R.
    Clayton, C. E.
    Huang, C.
    Johnson, D. K.
    Joshi, C.
    Lu, W.
    Marsh, K. A.
    Mori, W.
    Zhou, M.
    Deng, S.
    Katsouleas, T.
    Muggli, P.
    Oz, E.
    [J]. PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2006, 9 (10):
  • [10] ACCELERATION AND FOCUSING OF ELECTRONS IN 2-DIMENSIONAL NONLINEAR PLASMA WAKE FIELDS
    ROSENZWEIG, JB
    BREIZMAN, B
    KATSOULEAS, T
    SU, JJ
    [J]. PHYSICAL REVIEW A, 1991, 44 (10): : R6189 - R6192