A trigonometrical approach for some projection methods

被引:2
作者
Abramovitz, B
机构
[1] Ort Braude Coll, IL-20101 Karmiel, Israel
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
integral equations; projection methods; angle of subspaces;
D O I
10.1023/A:1006136418846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider an abstract projection method and apply it in characterizing the convergence of some known projection methods for Fredholm equations of the first kind.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 19 条
[1]   ON THE CONDITION NUMBER OF MATRICES ARISING IN THE TIKHONOV REGULARIZATION METHOD [J].
ABRAMOVITZ, B .
ACTA APPLICANDAE MATHEMATICAE, 1994, 36 (03) :211-226
[2]  
ABRAMOVITZ B, 1993, THESIS TECHNION
[3]  
[Anonymous], TRANSL MATH MONOGR
[4]  
BANKS SP, 1977, J I MATH APPL, V20, P143
[5]  
Bart H., 1979, MINIMAL FACTORIZATIO, V1
[6]  
Bruckner G., 1996, APPL ANAL, V63, P25
[7]  
ENGL HW, 1983, IMPROPERLY POSED PRO
[8]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[9]   REGULARIZATION OF III-POSED PROBLEMS - OPTIMAL PARAMETER CHOICE IN FINITE DIMENSIONS [J].
GROETSCH, CW ;
NEUBAUER, A .
JOURNAL OF APPROXIMATION THEORY, 1989, 58 (02) :184-200
[10]  
GROETSCH CW, 1982, J INTEGRAL EQUAT, V4, P173