Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level

被引:150
作者
Beyhan, Sinem
Tischler, Anna D.
Camilli, Andrew
Yildiz, Fitnat H.
机构
[1] Univ Calif Santa Cruz, Dept Environm Toxicol, Santa Cruz, CA 95064 USA
[2] Tufts Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02111 USA
[3] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
关键词
D O I
10.1128/JB.188.10.3600-3613.2006
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Vibrio cholerae, the causative agent of cholera, is a facultative human pathogen with intestinal and aquatic life cycles. The capacity of V. cholerae to recognize and respond to fluctuating parameters in its environment is critical to its survival. In many microorganisms, the second messenger, 3',5'-cyclic diguanylic acid (c-di-GMP), is believed to be important for integrating environmental stimuli that affect cell physiology. Sequence analysis of the V. cholerae genome has revealed an abundance of genes encoding proteins with either GGDEF domains, EAL domains, or both, which are predicted to modulate cellular c-di-GMP concentrations. To elucidate the cellular processes controlled by c-di-GMP, whole-genome transcriptome responses of the El Tor and classical V. cholerae biotypes to increased c-di-GMP concentrations were determined. The results suggest that V. cholerae responds to an elevated level of c-di-GMP by increasing the transcription of the vps, eps, and msh genes and decreasing that of flagellar genes. The functions of other c-di-GMP-regulated genes in V. cholerae are yet to be identified.
引用
收藏
页码:3600 / 3613
页数:14
相关论文
共 60 条
[1]   Mutations in the extracellular protein secretion pathway genes (eps) interfere with rugose polysaccharide production in and motility of Vibrio cholerae [J].
Ali, A ;
Johnson, JA ;
Franco, AA ;
Metzger, DJ ;
Connell, TD ;
Morris, JG ;
Sozhamannan, S .
INFECTION AND IMMUNITY, 2000, 68 (04) :1967-1974
[2]   AN IMPROVED TN7-BASED SYSTEM FOR THE SINGLE-COPY INSERTION OF CLONED GENES INTO CHROMOSOMES OF GRAM-NEGATIVE BACTERIA [J].
BAO, Y ;
LIES, DP ;
FU, H ;
ROBERTS, GP .
GENE, 1991, 109 (01) :167-168
[3]   The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis [J].
Bobrov, AG ;
Kirillina, O ;
Perry, RD .
FEMS MICROBIOLOGY LETTERS, 2005, 247 (02) :123-130
[4]   Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture [J].
Bomchil, N ;
Watnick, P ;
Kolter, R .
JOURNAL OF BACTERIOLOGY, 2003, 185 (04) :1384-1390
[5]   Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection [J].
Camilli, A ;
Mekalanos, JJ .
MOLECULAR MICROBIOLOGY, 1995, 18 (04) :671-683
[6]   VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor [J].
Casper-Lindley, C ;
Yildiz, FH .
JOURNAL OF BACTERIOLOGY, 2004, 186 (05) :1574-1578
[7]   The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton [J].
Chiavelli, DA ;
Marsh, JW ;
Taylor, RK .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :3220-3225
[8]   Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP [J].
Christen, M ;
Christen, B ;
Folcher, M ;
Schauerte, A ;
Jenal, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (35) :30829-30837
[9]   ENVIRONMENTAL RESERVOIR OF VIBRIO-CHOLERAE - THE CAUSATIVE AGENT OF CHOLERA [J].
COLWELL, RR ;
HUQ, A .
DISEASE IN EVOLUTION: GLOBAL CHANGES AND EMERGENCE OF INFECTIOUS DISEASES, 1994, 740 :44-54
[10]  
Costerton W, 2003, J CLIN INVEST, V112, P1466, DOI 10.1172/JCI200320365