Prepotentials for local mirror symmetry via Calabi-Yau fourfolds

被引:0
作者
Forbes, B [1 ]
Jinzenji, M [1 ]
机构
[1] Hokkaido Univ, Grad Sch Sci, Div Math, Kita Ku, Sapporo, Hokkaido 0600810, Japan
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2006年 / 03期
关键词
string duality; topological strings; differential and algebraic geometry;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we first derive an intrinsic definition of classical triple intersection numbers of K-S, where S is a complex toric surface, and use this to compute the extended Picard-Fuchs system of KS of [1], without making use of the instanton expansion. We then extend this formalism to local fourfolds K-X, where X is a complex 3-fold. As a result, we are able to fix the prepotential of local Calabi-Yau threefolds K-S up to polynomial terms of degree 2. We then outline methods of extending the procedure to non canonical bundle cases.
引用
收藏
页数:42
相关论文
共 16 条
  • [1] [Anonymous], HEPTH0002222
  • [2] Chiang T. -M., 1999, Adv. Theor. Math. Phys., V3, P495, DOI DOI 10.4310/ATMP.1999.V3.N3.A3
  • [3] COX DA, ALGGEOM9210008
  • [4] COX DA, 1999, MATH SURVEYS MONOGRA, V68, DOI DOI 10.1090/SURV/068
  • [5] D-branes on noncompact Calabi-Yau manifolds: K-theory and monodromy
    de la Ossa, X
    Florea, B
    Skarke, H
    [J]. NUCLEAR PHYSICS B, 2002, 644 (1-2) : 170 - 200
  • [6] DIACONESCU DE, D BRANES STRINGY CAL
  • [7] DIACONESCU DE, 2003, ADV THEOR MATH PHYS, V6, P619
  • [8] Extending the Picard-Fuchs system of local mirror symmetry
    Forbes, B
    Jinzenji, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [9] GOPAKUMAR R, 1999, ADV THEOR MATH PHYS, V3, P1415
  • [10] IQBAL A, HEPTH0410174