Determining an Unbounded Potential from Cauchy Data in Admissible Geometries

被引:34
作者
Ferreira, David Dos Santos [1 ]
Kenig, Carlos E. [2 ]
Salo, Mikko [3 ]
机构
[1] Univ Paris 13, CNRS, UMR LAGA 7539, F-93430 Villetaneuse, France
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Attenuated geodesic ray transform; Calderon inverse problem; Carleman estimates; Complex geometrical optics; Spectral cluster; UNIQUE CONTINUATION; RAY TRANSFORM;
D O I
10.1080/03605302.2012.736911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [] anisotropic inverse problems were considered in certain admissible geometries, that is, on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. In particular, it was proved that a bounded smooth potential in a Schrodinger equation was uniquely determined by the Dirichlet-to-Neumann map in dimensions n = 3. In this article we extend this result to the case of unbounded potentials, namely those in L n/2. In the process, we derive L p Carleman estimates with limiting Carleman weights similar to the Euclidean estimates of Jerison and Kenig [] and Kenig et al. [].
引用
收藏
页码:50 / 68
页数:19
相关论文
共 24 条
[1]  
Calderon A., 1980, SEM NUM AN ITS APPL, P65, DOI DOI 10.1590/S0101-82052006000200002
[3]   The boundary rigidity problem in the presence of a magnetic field [J].
Dairbekov, Nurlan S. ;
Paternain, Gabriel P. ;
Stefanov, Plamen ;
Uhlmann, Gunther .
ADVANCES IN MATHEMATICS, 2007, 216 (02) :535-609
[4]   Limiting Carleman weights and anisotropic inverse problems [J].
Ferreira, David Dos Santos ;
Kenig, Carlos E. ;
Salo, Mikko ;
Uhlmann, Gunther .
INVENTIONES MATHEMATICAE, 2009, 178 (01) :119-171
[5]   The X-ray transform for a generic family of curves and weights [J].
Frigyik, Bela ;
Stefanov, Plamen ;
Uhlmann, Gunther .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :89-108
[6]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
[7]   UNIQUE CONTINUATION AND ABSENCE OF POSITIVE EIGENVALUES FOR SCHRODINGER-OPERATORS [J].
JERISON, D ;
KENIG, CE ;
STEIN, EM .
ANNALS OF MATHEMATICS, 1985, 121 (03) :463-494
[9]   The Calderon problem with partial data [J].
Kenig, Carlos E. ;
Sjostrand, Johannes ;
Uhlmann, Gunther .
ANNALS OF MATHEMATICS, 2007, 165 (02) :567-591
[10]   INVERSE PROBLEMS FOR THE ANISOTROPIC MAXWELL EQUATIONS [J].
Kenig, Carlos E. ;
Salo, Mikko ;
Uhlmann, Gunther .
DUKE MATHEMATICAL JOURNAL, 2011, 157 (02) :369-419