Hyperconnectivity and Slow Synapses during Early Development of Medial Prefrontal Cortex in a Mouse Model for Mental Retardation and Autism

被引:86
作者
Testa-Silva, Guilherme [1 ]
Loebel, Alex [2 ,3 ]
Giugliano, Michele [4 ,5 ,6 ]
de Kock, Christiaan P. J. [1 ]
Mansvelder, Huibert D. [1 ]
Meredith, Rhiannon M. [1 ]
机构
[1] Vrije Univ Amsterdam, Ctr Neurogen & Cognit Res, Dept Integrat Neurophysiol, NL-1081 HV Amsterdam, Netherlands
[2] Univ Munich, Dept Biol 2, D-82152 Munich, Germany
[3] Bernstein Ctr Computat Neurosci, D-82152 Munich, Germany
[4] Univ Antwerp, Dept Biomed Sci, B-2610 Antwerp, Belgium
[5] Ecole Polytech Fed Lausanne, Brain Mind Inst, Lab Neural Microcircuitry, CH-1015 Lausanne, Switzerland
[6] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
关键词
autism; EPSC; Fragile X; hyperconnectivity; prefrontal cortex; PYRAMIDAL NEURONS; DENDRITIC SPINE; ABNORMAL-DEVELOPMENT; VISUAL-CORTEX; BARREL CORTEX; PLASTICITY; NETWORK; DISORDERS; HYPEREXCITABILITY; SYNCHRONIZATION;
D O I
10.1093/cercor/bhr224
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4-5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs.
引用
收藏
页码:1333 / 1342
页数:10
相关论文
共 59 条
[1]   From mRNP trafficking to spine dysmorphogenesis: The roots of fragile X syndrome [J].
Bagni, C ;
Greenough, WT .
NATURE REVIEWS NEUROSCIENCE, 2005, 6 (05) :376-387
[2]  
BAKKER CE, 1994, CELL, V78, P23
[3]   Persistent activity in neural networks with dynamic synapses [J].
Barak, Omri ;
Tsodyks, Misha .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) :323-332
[4]   Fragile X syndrome and autism at the intersection of genetic and neural networks [J].
Belmonte, Matthew K. ;
Bourgeron, Thomas .
NATURE NEUROSCIENCE, 2006, 9 (10) :1221-1225
[5]   Autism and abnormal development of brain connectivity [J].
Belmonte, MK ;
Allen, G ;
Beckel-Mitchener, A ;
Boulanger, LM ;
Carper, RA ;
Webb, SJ .
JOURNAL OF NEUROSCIENCE, 2004, 24 (42) :9228-9231
[6]   Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex [J].
Berger, Thomas K. ;
Perin, Rodrigo ;
Silberberg, Gilad ;
Markram, Henry .
JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (22) :5411-5425
[7]   The minicolumn hypothesis in neuroscience [J].
Buxhoeveden, DP ;
Casanova, MF .
BRAIN, 2002, 125 :935-951
[8]   Development and regulation of dendritic spine synapses [J].
Calabrese, B ;
Wilson, MS ;
Halpain, S .
PHYSIOLOGY, 2006, 21 :38-47
[9]   Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations [J].
Chapleau, Christopher A. ;
Calfa, Gaston D. ;
Lane, Meredith C. ;
Albertson, Asher J. ;
Larimore, Jennifer L. ;
Kudo, Shinichi ;
Armstrong, Dawna L. ;
Percy, Alan K. ;
Pozzo-Miller, Lucas .
NEUROBIOLOGY OF DISEASE, 2009, 35 (02) :219-233
[10]   EEG power and coherence in autistic spectrum disorder [J].
Coben, Robert ;
Clarke, Adam R. ;
Hudspeth, William ;
Barry, Robert J. .
CLINICAL NEUROPHYSIOLOGY, 2008, 119 (05) :1002-1009