Performance Analysis of Graphene Nanoribbon Field Effect Transistors in the Presence of Surface Roughness

被引:25
作者
Sanaeepur, Majid [1 ]
Goharrizi, Arash Yazdanpanah [1 ]
Sharifi, Mohammad Javad [1 ]
机构
[1] Shahid Beheshti Univ, Dept Elect & Comp Engn, Tehran 19834, Iran
关键词
Device performance; graphene field effect transistors; NEGF; quantum transport; subthreshold swing; surface roughness; transconductance; ATOMISTIC SIMULATION; NEMO; 3-D; LOCALIZATION; TRANSPORT; CMOS; FETS;
D O I
10.1109/TED.2013.2290049
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Device performance of armchair graphene nanoribbon field effect transistors in the presence of surface roughness scattering is studied. A 2-D Gaussian autocorrelation function is employed to model the surface roughness. Tight-binding Hamiltonian and nonequilibrium Green's function formalism are used to perform atomic scale electronic transport simulation. The effect of geometrical and surface roughness parameters on the ON-current, the OFF-current, the transconductance, and the subthreshold swing is investigated. Surface roughness can strongly affect the device performance depending on how large is the roughness amplitude or how small is the roughness correlation length.
引用
收藏
页码:1193 / 1198
页数:6
相关论文
共 43 条
[1]   Multidimensional modeling of nanotransistors [J].
Anantram, M. P. ;
Svizhenko, A. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2100-2115
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]  
[Anonymous], 2011, International Technology Roadmap for Semiconductors -, V2011
[4]   Atomistic Investigation of Low-Field Mobility in Graphene Nanoribbons [J].
Betti, Alessandro ;
Fiori, Gianluca ;
Iannaccone, Giuseppe .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (09) :2824-2830
[5]   Electron-phonon coupling and Raman spectroscopy in graphene [J].
Castro Neto, A. H. ;
Guinea, Francisco .
PHYSICAL REVIEW B, 2007, 75 (04)
[6]   Range and correlation effects in edge disordered graphene nanoribbons [J].
Cresti, Alessandro ;
Roche, Stephan .
NEW JOURNAL OF PHYSICS, 2009, 11
[7]  
Datta S., 2013, Quantum Transport: atom to Transistor
[8]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[9]   Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy [J].
Decker, Regis ;
Wang, Yang ;
Brar, Victor W. ;
Regan, William ;
Tsai, Hsin-Zon ;
Wu, Qiong ;
Gannett, William ;
Zettl, Alex ;
Crommie, Michael F. .
NANO LETTERS, 2011, 11 (06) :2291-2295
[10]   Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons [J].
Evaldsson, M. ;
Zozoulenko, I. V. ;
Xu, Hengyi ;
Heinzel, T. .
PHYSICAL REVIEW B, 2008, 78 (16)