Nutrient timing revisited: is there a post-exercise anabolic window?

被引:85
作者
Aragon, Alan Albert [1 ]
Schoenfeld, Brad Jon [2 ]
机构
[1] Calif State Univ Northridge, Northridge, CA 91330 USA
[2] CUNY Herbert H Lehman Coll, Dept Hlth Sci, Bronx, NY 10468 USA
关键词
MUSCLE PROTEIN-SYNTHESIS; HUMAN SKELETAL-MUSCLE; ESSENTIAL AMINO-ACID; RESISTANCE EXERCISE; WHEY-PROTEIN; CARBOHYDRATE INTAKE; SUBSTRATE UTILIZATION; GLYCOGEN RESYNTHESIS; INSULIN ACTION; WHOLE-BODY;
D O I
10.1186/1550-2783-10-5
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Nutrient timing is a popular nutritional strategy that involves the consumption of combinations of nutrients-primarily protein and carbohydrate-in and around an exercise session. Some have claimed that this approach can produce dramatic improvements in body composition. It has even been postulated that the timing of nutritional consumption may be more important than the absolute daily intake of nutrients. The post-exercise period is widely considered the most critical part of nutrient timing. Theoretically, consuming the proper ratio of nutrients during this time not only initiates the rebuilding of damaged muscle tissue and restoration of energy reserves, but it does so in a supercompensated fashion that enhances both body composition and exercise performance. Several researchers have made reference to an anabolic "window of opportunity" whereby a limited time exists after training to optimize training-related muscular adaptations. However, the importance - and even the existence - of a post-exercise 'window' can vary according to a number of factors. Not only is nutrient timing research open to question in terms of applicability, but recent evidence has directly challenged the classical view of the relevance of post-exercise nutritional intake with respect to anabolism. Therefore, the purpose of this paper will be twofold: 1) to review the existing literature on the effects of nutrient timing with respect to post-exercise muscular adaptations, and; 2) to draw relevant conclusions that allow practical, evidence-based nutritional recommendations to be made for maximizing the anabolic response to exercise.
引用
收藏
页数:11
相关论文
共 85 条
[1]  
Adams G, 2012, COMPREHENSIVE PHYSL, V2829, P2970
[2]   Muscle full effect after oral protein time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling [J].
Atherton, Philip J. ;
Etheridge, Timothy ;
Watt, Peter W. ;
Wilkinson, Daniel ;
Selby, Anna ;
Rankin, Debbie ;
Smith, Ken ;
Rennie, Michael J. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2010, 92 (05) :1080-1088
[3]   Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement [J].
Berardi, John M. ;
Price, Thomas B. ;
Noreen, Eric E. ;
Lemon, Peter W. R. .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2006, 38 (06) :1106-1113
[4]   An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein [J].
Biolo, G ;
Tipton, KD ;
Klein, S ;
Wolfe, RR .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1997, 273 (01) :E122-E129
[5]   Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise [J].
Biolo, G ;
Williams, BD ;
Fleming, RYD ;
Wolfe, RR .
DIABETES, 1999, 48 (05) :949-957
[6]   Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects [J].
Blomstrand, E ;
Saltin, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 514 (01) :293-302
[7]   Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo [J].
Bodine, SC ;
Stitt, TN ;
Gonzalez, M ;
Kline, WO ;
Stover, GL ;
Bauerlein, R ;
Zlotchenko, E ;
Scrimgeour, A ;
Lawrence, JC ;
Glass, DJ ;
Yancopoulos, GD .
NATURE CELL BIOLOGY, 2001, 3 (11) :1014-1019
[8]   Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids [J].
Bohé, J ;
Low, JFA ;
Wolfe, RR ;
Rennie, MJ .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 532 (02) :575-579
[9]   Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise [J].
Borsheim, E ;
Cree, MG ;
Tipton, KD ;
Elliott, TA ;
Aarsland, A ;
Wolfe, RR .
JOURNAL OF APPLIED PHYSIOLOGY, 2004, 96 (02) :674-678
[10]   Interactions between exercise and nutrition to prevent muscle waste during ageing [J].
Breen, Leigh ;
Phillips, Stuart M. .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2013, 75 (03) :708-715