New fixed point results in quasi-metric spaces and applications in fractals theory

被引:22
作者
Secelean, Nicolae Adrian [1 ]
Mathew, Sunil [2 ]
Wardowski, Dariusz [3 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Comp Sci, Sibiu, Romania
[2] Natl Inst Technol Calicut, Dept Math, Calicut, Kerala, India
[3] Univ Lodz, Dept Nonlinear Anal, Fac Math & Comp Sci, Lodz, Poland
关键词
Quasi-metric space; Forward (backward) F-contraction; Picard operator; Iterated function system; Fractals;
D O I
10.1186/s13662-019-2119-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some fixed point theorems for F-contractions in the framework of quasi-metric spaces generalizing and improving several similar results in metric spaces. At the same time, we consider iterated function systems consisting of F-contractions on quasi-metric spaces, and we give some sufficient conditions for the existence and uniqueness of their attractor which is, generally, a fractal. Some illustrative examples are provided.
引用
收藏
页数:23
相关论文
共 28 条
[1]   Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem [J].
Ali, Muhammad Usman ;
Kamran, Tayyab ;
Postolache, Mihai .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (01) :17-30
[2]  
Aminpour A., 2012, MATH ETERNA, V2, P533
[3]  
Barnsley M, 1993, Fractals everywhere, Vsecond
[4]   Generated quasi-metric hyper and function spaces [J].
Brattka, V .
TOPOLOGY AND ITS APPLICATIONS, 2003, 127 (03) :355-373
[5]  
Ciric L.B., 1971, Math. Balk, V1, P52
[6]   Completeness in quasi-metric spaces and Ekeland Variational Principle [J].
Cobzas, S. .
TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (08) :1073-1084
[7]   An asymmetric Arzela-Ascoli theorem [J].
Collins, Julia ;
Zimmer, Johannes .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (11) :2312-2322
[8]  
Engelking R., 1989, General Topology
[10]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747