Complementation in the Lattice of Locally Convex Topologies

被引:3
作者
Richmond, Thomas A. [1 ]
机构
[1] Western Kentucky Univ, Dept Math, Bowling Green, KY 42101 USA
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2013年 / 30卷 / 02期
关键词
Locally convex; Ordered topological space; Complement; NUMBER;
D O I
10.1007/s11083-012-9257-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find all locally convex homogeneous topologies on (a"e, a parts per thousand currency signaEuro parts per thousand) and determine which of these have locally convex complements. Among the locally convex topologies on an n-point totally ordered set, each has a locally convex complement and, for n a parts per thousand yenaEuro parts per thousand 3, at least n -aEuro parts per thousand 2 of them have 2 (n -aEuro parts per thousand 1) locally convex complements. For any infinite cardinal kappa, totally ordered spaces of cardinality kappa which have exactly 1, exactly kappa, and exactly 2 (kappa) locally convex complements are exhibited.
引用
收藏
页码:487 / 496
页数:10
相关论文
共 19 条
[1]  
ALAS OT, 2004, APPL GEN TOPOL, V5, P231
[2]   FAMILIES OF MUTUALLY COMPLEMENTARY TOPOLOGIES [J].
ANDERSON, BA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 29 (02) :362-&
[3]   T1-COMPLEMENTS OF T1 TOPOLOGIES [J].
ANDERSON, BA ;
STEWART, DG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (01) :77-&
[4]  
Anderson BA, 1970, FUND MATH, V69, P267, DOI 10.4064/fm-69-3-267-277
[5]   The number of complements of a topology on n points is at least 2(n) (except for some special cases) [J].
Brown, JI ;
Watson, S .
DISCRETE MATHEMATICS, 1996, 154 (1-3) :27-39
[6]  
Hartmanis J., 1958, Canadian J. Math, V10, P547, DOI [10.4153/CJM-1958-054-5, DOI 10.4153/CJM-1958-054-5]
[7]  
Knight RW, 1998, ORDER, V14, P259
[8]  
Lamper M., 1974, Arch Math. (Brno), V10, P221
[9]  
Lihova J., 1983, Contributions to Lattice Theory, P609
[10]  
SCHNARE PS, 1972, P AM MATH SOC, V35, P285