Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates

被引:67
作者
Reeves, M. T. [1 ]
Anderson, B. P. [2 ]
Bradley, A. S. [1 ]
机构
[1] Univ Otago, Dept Phys, Jack Dodd Ctr Quantum Technol, Dunedin, New Zealand
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
STATISTICAL-MECHANICS; INVERSE ENERGY; VORTICES; FLUID; MODEL;
D O I
10.1103/PhysRevA.86.053621
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate two-dimensional turbulence in finite-temperature trapped Bose-Einstein condensates within damped Gross-Pitaevskii theory. Turbulence is produced via circular motion of a Gaussian potential barrier stirring the condensate. We systematically explore a range of stirring parameters and identify three regimes, characterized by the injection of distinct quantum vortex structures into the condensate: (A) periodic vortex dipole injection, (B) irregular injection of a mixture of vortex dipoles and co-rotating vortex clusters, and (C) continuous injection of oblique solitons that decay into vortex dipoles. Spectral analysis of the kinetic energy associated with vortices reveals that regime (B) can intermittently exhibit a Kolmogorov k(-5/3) power law over almost a decade of length or wave-number (k) scales. The kinetic energy spectrum of regime (C) exhibits a clear k(-3/2) power law associated with an inertial range for weak-wave turbulence and a k(-7/2) power law for high wave numbers. We thus identify distinct regimes of forcing for generating either two-dimensional quantum turbulence or classical weak-wave turbulence that may be realizable experimentally.
引用
收藏
页数:11
相关论文
共 59 条
  • [1] Energy spectrum of superfluid turbulence with no normal-fluid component
    Araki, T
    Tsubota, M
    Nemirovskii, SK
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (14) : 1 - 145301
  • [2] Is the Reynolds number infinite in superfluid turbulence?
    Barenghi, Carlo F.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) : 2195 - 2202
  • [3] Batchelor G.K., 1969, Phys. Fluids, V12, pII, DOI [DOI 10.1063/1.1692443, 10.1063/1.1692443]
  • [4] Scenario of strongly nonequilibrated Bose-Einstein condensation
    Berloff, NG
    Svistunov, BV
    [J]. PHYSICAL REVIEW A, 2002, 66 (01): : 136031 - 136037
  • [5] Characterization of reconnecting vortices in superfluid helium
    Bewley, Gregory P.
    Paoletti, Matthew S.
    Sreenivasan, Katepalli R.
    Lathrop, Daniel P.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (37) : 13707 - 13710
  • [6] Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques
    Blakie, P. B.
    Bradley, A. S.
    Davis, M. J.
    Ballagh, R. J.
    Gardiner, C. W.
    [J]. ADVANCES IN PHYSICS, 2008, 57 (05) : 363 - 455
  • [7] Two-Dimensional Turbulence
    Boffetta, Guido
    Ecke, Robert E.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, VOL 44, 2012, 44 : 427 - 451
  • [8] Bose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation
    Bradley, A. S.
    Gardiner, C. W.
    Davis, M. J.
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [9] Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence
    Bradley, Ashton S.
    Anderson, Brian P.
    [J]. PHYSICAL REVIEW X, 2012, 2 (04):
  • [10] Self-similar Expansion of the Density Profile in a Turbulent Bose-Einstein Condensate
    Caracanhas, M.
    Fetter, A. L.
    Muniz, S. R.
    Magalhaes, K. M. F.
    Roati, G.
    Bagnato, G.
    Bagnato, V. S.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 166 (1-2) : 49 - 58