Nonassociative Strict Deformation Quantization of C*-Algebras and Nonassociative Torus Bundles

被引:1
作者
Hannabuss, Keith C. [1 ,2 ]
Mathai, Varghese [3 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
[2] Univ Oxford Balliol Coll, Oxford OX1 3BJ, England
[3] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
nonassociative strict deformation quantization; nonassociative torus; nonassociative torus bundles; T-duality; T-DUALITY; H-FLUXES; TOPOLOGY;
D O I
10.1007/s11005-012-0574-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we initiate the study of nonassociative strict deformation quantization of C*-algebras with a torus action. We shall also present a definition of nonassociative principal torus bundles, and give a classification of these as nonassociative strict deformation quantization of ordinary principal torus bundles. We then relate this to T-duality of principal torus bundles with H-flux. In particular, the Octonions fit nicely into our theory.
引用
收藏
页码:107 / 123
页数:17
相关论文
共 24 条
[1]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[2]   Nonassociative tori and applications to T-duality [J].
Bouwknegt, P ;
Hannabuss, K ;
Mathai, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (01) :41-69
[3]   Topology and H-flux of T-dual manifolds -: art. no. 181601 [J].
Bouwknegt, P ;
Evslin, J ;
Mathai, V .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :181601-1
[4]   T-duality:: Topology change from H-flux [J].
Bouwknegt, P ;
Evslin, J ;
Mathai, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (02) :383-415
[5]   Twisted K-theory and K-theory of bundle gerbes [J].
Bouwknegt, P ;
Carey, AL ;
Mathai, V ;
Murray, MK ;
Stevenson, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) :17-45
[6]  
Bouwknegt P, 2000, J HIGH ENERGY PHYS
[7]  
Bouwknegt P., 2011, CLAY MATH P, V12, P127
[8]   Nonassociative star product deformations for D-brane world-volumes in curved backgrounds [J].
Cornalba, L ;
Schiappa, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (01) :33-66
[9]   Principal non-commutative torus bundles [J].
Echterhoff, Siegfried ;
Nest, Ryszard ;
Oyono-Oyono, Herve .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 99 :1-31
[10]  
Hannabuss KC, 2010, P SYMP PURE MATH, V81, P133