Completing the spectrum for three designs related to the graph K4 - e

被引:0
|
作者
Shen, C. [1 ]
Zheng, Y. [1 ]
Cao, H. [1 ]
机构
[1] Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
(K-4 - e)-decomposition; Frame; Packing; Covering; RESOLVABLE; (K-4;
D O I
10.1016/j.disc.2020.112011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study three designs related to the graph K-4 - e. We complete the determination of the spectrum of uniform frames, maximum resolvable packings and minimum resolvable coverings of K-4 - e. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 5 条
  • [1] Completing the Spectrum of Resolvable (K4 - e)-Designs
    Wang, Lidong
    ARS COMBINATORIA, 2012, 105 : 289 - 291
  • [2] On the existence of resolvable K4 -: e designs
    Ge, Gennian
    Ling, Alan C. H.
    JOURNAL OF COMBINATORIAL DESIGNS, 2007, 15 (06) : 502 - 510
  • [3] Minimum Resolvable Coverings of Kv with Copies of K4 − e
    Renwang Su
    Lidong Wang
    Graphs and Combinatorics, 2011, 27 : 883 - 896
  • [4] Simple Minimum (K4 − e)-coverings of Complete Multipartite Graphs
    Yu Feng Gao
    Yan Xun Chang
    Tao Feng
    Acta Mathematica Sinica, English Series, 2019, 35 : 632 - 648
  • [5] On the maximum packing problem of MPℷ(3, K4(3) - e, υ)
    Wu, Yan
    Chang, Yanxun
    ARS COMBINATORIA, 2014, 113 : 361 - 375