A Simplified Lattice Boltzmann Method without Evolution of Distribution Function

被引:110
作者
Chen, Z. [1 ]
Shu, C. [1 ]
Wang, Y. [1 ]
Yang, L. M. [2 ]
Tan, D. [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 10 Kent Ridge Crescent, Singapore 119260, Singapore
[2] Nanjing Univ Aeronaut & Astronaut, Dept Aerodynam, Coll Aerosp Engn, Yudao St, Nanjing 210016, Jiangsu, Peoples R China
关键词
Chapman-Enskog expansion analysis; lattice Boltzmann equation; Navier-Stokes equations; memory cost; stability; NAVIER-STOKES EQUATIONS; FLUX SOLVER; BOUNDARY-CONDITIONS; INCOMPRESSIBLE FLOWS; SIMULATION; MODEL; STABILITY; HYDRODYNAMICS; LAYER;
D O I
10.4208/aamm.OA-2016-0029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a simplified lattice Boltzmann method (SLBM) without evolution of the distribution function is developed for simulating incompressible viscous flows. This method is developed from the application of fractional step technique to the macroscopic Navier-Stokes (N-S) equations recovered from lattice Boltzmann equation by using Chapman-Enskog expansion analysis. In SLBM, the equilibrium distribution function is calculated from the macroscopic variables, while the non-equilibrium distribution function is simply evaluated from the difference of two equilibrium distribution functions. Therefore, SLBM tracks the evolution of the macroscopic variables rather than the distribution function. As a result, lower virtual memories are required and physical boundary conditions could be directly implemented. Through numerical test at high Reynolds number, the method shows very nice performance in numerical stability. An accuracy test for the 2D Taylor-Green flow shows that SLBM has the second-order of accuracy in space. More benchmark tests, including the Couette flow, the Poiseuille flow as well as the 2D lid-driven cavity flow, are conducted to further validate the present method; and the simulation results are in good agreement with available data in literatures.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 49 条
[1]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[2]  
Anderson JD., 1995, Computational Fluid Dynamics
[3]  
[Anonymous], 2013, THESIS TONGJI U CHIN
[4]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[5]   RECOVERY OF THE NAVIER-STOKES EQUATIONS USING A LATTICE-GAS BOLTZMANN METHOD [J].
CHEN, HD ;
CHEN, SY ;
MATTHAEUS, WH .
PHYSICAL REVIEW A, 1992, 45 (08) :R5339-R5342
[6]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[7]   LATTICE BOLTZMANN MODEL FOR SIMULATION OF MAGNETOHYDRODYNAMICS [J].
CHEN, SY ;
CHEN, HD ;
MARTINEZ, D ;
MATTHAEUS, W .
PHYSICAL REVIEW LETTERS, 1991, 67 (27) :3776-3779
[8]   On boundary conditions in lattice Boltzmann methods [J].
Chen, SY ;
Martinez, D ;
Mei, RW .
PHYSICS OF FLUIDS, 1996, 8 (09) :2527-2536
[9]   Multiple-relaxation-time lattice Boltzmann models in three dimensions [J].
d'Humières, D ;
Ginzburg, I ;
Krafczyk, M ;
Lallemand, P ;
Luo, LS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1792) :437-451
[10]   The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems [J].
Feng, ZG ;
Michaelides, EE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) :602-628