共 24 条
Degenerate polymerase chain reaction strategy with DNA microarray for detection of multiple and various subtypes of virus during blood screening
被引:3
作者:
Takizawa, Kazuya
Nakashima, Tatsuo
Mizukami, Takuo
Kuramitsu, Madoka
Endoh, Daiji
Kawauchi, Shigeto
Sasaki, Kohsuke
Momose, Haruka
Kiba, Yoshiharu
Mizutani, Tetsuya
Furuta, Rika A.
Yamaguchi, Kazunari
Hamaguchi, Isao
[1
]
机构:
[1] Natl Inst Infect Dis, Dept Safety Res Blood & Biol, Tokyo 2080011, Japan
来源:
关键词:
HEPATITIS-B-VIRUS;
WEST-NILE-VIRUS;
GENE SYNTHESIS;
C VIRUS;
GENOTYPES;
INFECTION;
JAPAN;
TRANSFUSION;
PCR;
DONORS;
D O I:
10.1111/trf.12193
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
BackgroundThe risk of transferring blood-borne infections during transfusion is continually increasing because of newly emerging and reemerging viruses. Development of a rapid screening method for emerging viruses that might be transmitted by transfusion is required to eliminate such pathogens during blood donor screening. Owing to increased use of human materials in organ transplants and cell therapy, the risk of donor-transmitted viral infections is also increasing. Although nucleic acid amplification technology (NAT) is dedicated to blood screening, a small, convenient detection system is needed at the laboratory and hospital level. Study Design and MethodsWe developed a new pathogen detection system that can detect multiple viruses simultaneously, using originally designed degenerate polymerase chain reaction primers to amplify a wide range of viral genotypes. Amplified samples were identified using a DNA microarray of pathogen-specific probes. ResultsWe detected very low copy numbers of multiple subtypes of viruses, such as human hepatitis C virus (HCV), human hepatitis B virus (HBV), human parvovirus B19 (PVB19), and West Nile virus (WNV), using a single plate. We also detected all genotypes of human immunodeficiency virus (HIV) but sensitivity was less than for the other viruses. ConclusionWe developed a microarray assay using novel primers for detection of a wide range of multiple pathogens and subtypes. Our NAT system was accurate and reliable for detection of HIV, HBV, HCV, PVB19, and WNV, with respect to specificity, sensitivity, and genotype inclusivity. Our system could be customized and extended for emerging pathogens and is suitable as a future NAT system.
引用
收藏
页码:2545 / 2555
页数:11
相关论文