Preoperative Prediction Power of Imaging Methods for Microvascular Invasion in Hepatocellular Carcinoma: A Systemic Review and Meta-Analysis

被引:36
作者
Huang, Jiacheng [1 ,2 ,3 ]
Than, Wuwei [4 ]
Zhang, Lele [1 ,2 ,3 ]
Huang, Qiang [5 ]
Lin, Shengzhang [1 ]
Ding, Yong [4 ]
Liang, Wenjie [5 ]
Zheng, Shusen [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Coll Med, Dept Hepatobiliary & Pancreat Surg, Hangzhou, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 1, Coll Med, Collaborat Innovat Ctr Diag & Treatment Infect Di, Hangzhou, Peoples R China
[3] Zhejiang Univ, Key Lab Combined Multiorgan Transplantat, Coll Med, Affiliated Hosp 1,Minist Publ Hlth, Hangzhou, Peoples R China
[4] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Peoples R China
[5] Zhejiang Univ, Affiliated Hosp 1, Coll Med, Dept Radiol, Hangzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2020年 / 10卷
关键词
hepatocellular carcinoma; microvascular invasion; radiomics; conventional image; functional image; meta-analysis; RADIOMICS; TOMOGRAPHY; RECURRENCE; NOMOGRAM; RISK; MRI;
D O I
10.3389/fonc.2020.00887
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: To compare the predictive power between radiomics and non-radiomics (conventional imaging and functional imaging methods) for preoperative evaluation of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Methods: Comprehensive publications were screened in PubMed, Embase, and Cochrane Library. Studies focusing on the discrimination values of imaging methods, including radiomics and non-radiomics methods, for MVI evaluation were included in our meta-analysis. Results: Thirty-three imaging studies with 5,462 cases, focusing on preoperative evaluation of MVI status in HCC, were included. The sensitivity and specificity of MVI prediction in HCC were 0.78 [95% confidence interval (CI): 0.75-0.80; I-2 = 70.7%] and 0.78 (95% CI: 0.76-0.81; I-2 = 0.0%) for radiomics, respectively, and were 0.73 (95% CI: 0.71-0.75; I-2 = 83.7%) and 0.82 (95% CI: 0.80-0.83; I-2 = 86.5%) for non-radiomics, respectively. The areas under the receiver operation curves for radiomics and non-radiomics to predict MVI status in HCC were 0.8550 and 0.8601, respectively, showing no significant difference. Conclusion: The imagingmethod is feasible to predict theMVI state of HCC. Radiomics method based on medical image data is a promising application in clinical practice and can provide quantifiable image features. With the help of these features, highly consistent prediction performance will be achieved in anticipation.
引用
收藏
页数:13
相关论文
共 59 条
[11]   Pretreatment 18F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated with Stereotactic Body Radiotherapy for Early-Stage Non-Small Cell Lung Cancer: A Multicentric Study [J].
Dissaux, Gurvan ;
Visvikis, Dimitris ;
Da-ano, Ronrick ;
Pradier, Olivier ;
Chajon, Enrique ;
Barillot, Isabelle ;
Duverge, Loig ;
Masson, Ingrid ;
Abgral, Ronan ;
Ribeiro, Maria-Joao Santiago ;
Devillers, Anne ;
Pallardy, Amandine ;
Fleury, Vincent ;
Mahe, Marc-Andre ;
De Crevoisier, Renaud ;
Hatt, Mathieu ;
Schick, Ulrike .
JOURNAL OF NUCLEAR MEDICINE, 2020, 61 (06) :814-820
[12]  
European Assoc Study Liver, 2018, J HEPATOL, V69, P182, DOI 10.1016/j.jhep.2018.03.019
[13]   Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI [J].
Feng, Shi-Ting ;
Jia, Yingmei ;
Liao, Bing ;
Huang, Bingsheng ;
Zhou, Qian ;
Li, Xin ;
Wei, Kaikai ;
Chen, Lili ;
Li, Bin ;
Wang, Wei ;
Chen, Shuling ;
He, Xiaofang ;
Wang, Haibo ;
Peng, Sui ;
Chen, Ze-Bin ;
Tang, Mimi ;
Chen, Zhihang ;
Hou, Yang ;
Peng, Zhenwei ;
Kuang, Ming .
EUROPEAN RADIOLOGY, 2019, 29 (09) :4648-4659
[14]   A Nomogram Predicting Microvascular Invasion Risk in BCLC 0/A Hepatocellular Carcinoma after Curative Resection [J].
Gao, Shuai-Xiang ;
Liao, Rui ;
Wang, Hua-Qiang ;
Liu, Dan ;
Luo, Fang .
BIOMED RESEARCH INTERNATIONAL, 2019, 2019
[15]   Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma [J].
Hu, Hang-tong ;
Wang, Zhu ;
Huang, Xiao-wen ;
Chen, Shu-ling ;
Zheng, Xin ;
Ruan, Si-min ;
Xie, Xiao-yan ;
Lu, Ming-de ;
Yu, Jie ;
Tian, Jie ;
Liang, Ping ;
Wang, Wei ;
Kuang, Ming .
EUROPEAN RADIOLOGY, 2019, 29 (06) :2890-2901
[16]   Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Preoperative Gd-EOB-DTPA-Dynamic Enhanced MRI and Histopathological Correlation [J].
Huang, Mengqi ;
Liao, Bing ;
Xu, Ping ;
Cai, Huasong ;
Huang, Kun ;
Dong, Zhi ;
Xu, Ling ;
Peng, Zhenpeng ;
Luo, Yanji ;
Zheng, Keguo ;
Peng, Baogang ;
Li, Zi-Ping ;
Feng, Shi-Ting .
CONTRAST MEDIA & MOLECULAR IMAGING, 2018,
[17]   Radiomics for diagnosis of dual-phenotype hepatocellular carcinoma using Gd-EOB-DTPA-enhanced MRI and patient prognosis [J].
Huang, Xialing ;
Long, Liling ;
Wei, Jieqin ;
Li, Yajuan ;
Xia, Yuwei ;
Zuo, Panli ;
Chai, Xiangfei .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2019, 145 (12) :2995-3003
[18]   Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer [J].
Huang, Yan-qi ;
Liang, Chang-hong ;
He, Lan ;
Tian, Jie ;
Liang, Cui-shan ;
Chen, Xin ;
Ma, Ze-lan ;
Liu, Zai-yi .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (18) :2157-+
[19]   Preoperative prediction of microvascular invasion of hepatocellular carcinoma using 18F-FDG PET/CT: a multicenter retrospective cohort study [J].
Hyun, Seung Hyup ;
Eo, Jae Seon ;
Song, Bong-Il ;
Lee, Jeong Won ;
Na, Sae Jung ;
Hong, Il Ki ;
Oh, Jin Kyoung ;
Chung, Yong An ;
Kim, Tae-Sung ;
Yun, Mijin .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (05) :720-726
[20]   Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study [J].
Ji, Gu-Wei ;
Zhu, Fei-Peng ;
Xu, Qing ;
Wang, Ke ;
Wu, Ming-Yu ;
Tang, Wei-Wei ;
Li, Xiang-Cheng ;
Wang, Xue-Hao .
EBIOMEDICINE, 2019, 50 :156-165