Boundary regularity for weak heat flows

被引:2
作者
Liu, XG [1 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
关键词
weak heat flow of harmonic maps; Hardy-BMO duality; partial regularity;
D O I
10.1142/S0252959902000134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The partial regularity of the weak heat flow of harmonic maps from a Riemannian manifold M with boundary into general compact Riemannian manifold N without boundary is considered. It is shown that the singular set Sing(u) of the weak heat flow satisfies H-rho(n)(Sing(u)) = 0, with n = dimensionM. Here H-rho(n) is Hausdorff measure with respect to parabolic metric P((x, t), (y, s)) = m-(\x -y\, root\t-s\).
引用
收藏
页码:119 / 136
页数:18
相关论文
共 28 条
[1]  
ACERBI E, 1987, ARCH RATION MECH AN, V99, P261
[2]  
[Anonymous], 1993, COMMUN ANAL GEOM
[3]   ON THE SINGULAR SET OF STATIONARY HARMONIC MAPS [J].
BETHUEL, F .
MANUSCRIPTA MATHEMATICA, 1993, 78 (04) :417-443
[4]  
CHEN Y, 1995, COMM PURE APPL MATH, V4
[5]  
CHEN Y, IN PRESS PARTIAL REG
[6]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[7]   DIRICHLET PROBLEMS FOR HEAT FLOWS OF HARMONIC MAPS IN HIGHER DIMENSIONS [J].
CHEN, YM .
MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (04) :557-565
[8]   HEAT-FLOW OF P-HARMONIC MAPS WITH VALUES INTO SPHERES [J].
CHEN, YM ;
HONG, MC ;
HUNGERBUHLER, N .
MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (01) :25-35
[9]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[10]   NONUNIQUENESS FOR THE HEAT-FLOW OF HARMONIC MAPS [J].
CORON, JM .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (04) :335-344