Thermal conductive polymers

被引:2
|
作者
Amesöder, S [1 ]
Ehrenstein, GW [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Kunststonfftech, D-91058 Erlangen, Germany
来源
ZEITSCHRIFT FUR METALLKUNDE | 2003年 / 94卷 / 05期
关键词
high filled polymers; polymer compounds; thermal conductivity; injection molding; measurements;
D O I
10.3139/146.030606
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The potential and significant influences of thermal conductive optimised thermoplastic polymers have been investigated. Using new polymer compounds with a high content of metal or ceramic filler, besides of several mechanical features of a part, it is also possible to integrate additional electric, magnetic or thermal functionalities. The increase of the thermal conductivity by controlled addition of metal or ceramic fillers is an innovative approach for direct adjustment of a plastic part's heat transport performance. To achieve a thermal conductivity that is of technical interest, a filler content of at least 60 vol.% is necessary. Besides of the filler content, important factors of influence are the thermal conductivity of the filler itself and the shape of the filler particles. When compared with globular copper particles, using filler particles with anisotropic shape, e. g. copper flakes with a high aspect ratio, it is possible to increase the thermal conductivity significantly. In the case of anisotropic fillers, orientations that result form the injections molding process lead to a higher thermal conductivity in the direction of the orientation, where the differences are of serious practical concern.
引用
收藏
页码:606 / 609
页数:4
相关论文
共 50 条
  • [31] Investigation of Thermal and Electrical Properties for Conductive Polymer Composites
    Hassan K. Juwhari
    Ahmad Abuobaid
    Awwad M. Zihlif
    Ziad M. Elimat
    Journal of Electronic Materials, 2017, 46 : 5705 - 5714
  • [32] Investigation of Thermal and Electrical Properties for Conductive Polymer Composites
    Juwhari, Hassan K.
    Abuobaid, Ahmad
    Zihlif, Awwad M.
    Elimat, Ziad M.
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (10) : 5705 - 5714
  • [33] High Thermal Conductive Liquid Crystal Elastomer Nanofibers
    Wang, Jingxuan
    Wen, Yue
    Pan, Duo
    Lin, Shulang
    Chinnappan, Amutha
    He, Qiguang
    Liu, Chuntai
    Huang, Zhiwei
    Cai, Shengqiang
    Ramakrishna, Seeram
    Shin, Sunmi
    NANO LETTERS, 2024, 24 (32) : 9990 - 9997
  • [34] Study on thermal conductive BN/novolac resin composites
    Li, Shasha
    Qi, Shuhua
    Liu, Nailiang
    Cao, Peng
    THERMOCHIMICA ACTA, 2011, 523 (1-2) : 111 - 115
  • [35] Thermal conductivity studies on wool fabrics with conductive coatings
    Wang, J.
    Kaynak, A.
    Wang, L.
    Liu, X.
    JOURNAL OF THE TEXTILE INSTITUTE, 2006, 97 (03) : 265 - 269
  • [36] Study on insulating thermal conductive BN/HDPE composites
    Zhou, Wenying
    Qi, Shuhua
    Li, Haidong
    Shao, Shiyu
    THERMOCHIMICA ACTA, 2007, 452 (01) : 36 - 42
  • [37] Ultrahigh Thermal Conductive yet Superflexible Graphene Films
    Peng, Li
    Xu, Zhen
    Liu, Zheng
    Guo, Yan
    Li, Peng
    Gao, Chao
    ADVANCED MATERIALS, 2017, 29 (27)
  • [38] A microstructure for thermal conductivity measurement of conductive thin films
    Thuau, D.
    Koymen, I.
    Cheung, R.
    MICROELECTRONIC ENGINEERING, 2011, 88 (08) : 2408 - 2412
  • [39] Situation of Research and Development of Thermal Conductive Magnesium Alloys
    Wang Chunming
    Chen Yungui
    Xiao Sufen
    RARE METAL MATERIALS AND ENGINEERING, 2015, 44 (10) : 2596 - 2600
  • [40] Scanning thermal microscopy with heat conductive nanowire probes
    Timofeeva, Maria
    Bolshakov, Alexey
    Tovee, Peter D.
    Zeze, Dagou A.
    Dubrovskii, Vladimir G.
    Kolosov, Oleg V.
    ULTRAMICROSCOPY, 2016, 162 : 42 - 51