Thermal conductive polymers

被引:2
|
作者
Amesöder, S [1 ]
Ehrenstein, GW [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Kunststonfftech, D-91058 Erlangen, Germany
来源
ZEITSCHRIFT FUR METALLKUNDE | 2003年 / 94卷 / 05期
关键词
high filled polymers; polymer compounds; thermal conductivity; injection molding; measurements;
D O I
10.3139/146.030606
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The potential and significant influences of thermal conductive optimised thermoplastic polymers have been investigated. Using new polymer compounds with a high content of metal or ceramic filler, besides of several mechanical features of a part, it is also possible to integrate additional electric, magnetic or thermal functionalities. The increase of the thermal conductivity by controlled addition of metal or ceramic fillers is an innovative approach for direct adjustment of a plastic part's heat transport performance. To achieve a thermal conductivity that is of technical interest, a filler content of at least 60 vol.% is necessary. Besides of the filler content, important factors of influence are the thermal conductivity of the filler itself and the shape of the filler particles. When compared with globular copper particles, using filler particles with anisotropic shape, e. g. copper flakes with a high aspect ratio, it is possible to increase the thermal conductivity significantly. In the case of anisotropic fillers, orientations that result form the injections molding process lead to a higher thermal conductivity in the direction of the orientation, where the differences are of serious practical concern.
引用
收藏
页码:606 / 609
页数:4
相关论文
共 50 条
  • [21] Effects of conductive particle networks on the effective thermal conductivity of a thermal interface material
    Mayer, J. L.
    Griesinger, A.
    Willenbacher, N.
    2023 29TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS, THERMINIC, 2023,
  • [22] Thermal performance of a high conductive shape-stabilized thermal storage material
    Xiao, M
    Feng, B
    Gong, KC
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 69 (03) : 293 - 296
  • [23] Study on the bimodal filler influence on the effective thermal conductivity of thermal conductive adhesive
    Yan Zhang
    Jing-yu Fan
    Cong Yue
    Johan Liu
    Masahiro Inoue
    Microsystem Technologies, 2011, 17 : 93 - 99
  • [24] Effects of carbonaceous conductive fillers on electrical and thermal properties of asphalt-matrix conductive composites
    Zhou, Xiaofeng
    Zhang, Xiaosong
    Zhou, Jiancheng
    Journal of Southeast University (English Edition), 2013, 29 (01) : 88 - 91
  • [25] Thermal Transport in Self-Assembled Conductive Networks for Thermal Interface Materials
    Hu, Lin
    Evans, William
    Keblinski, Pawel
    JOURNAL OF ELECTRONIC PACKAGING, 2011, 133 (02)
  • [26] Prediction on Thermal Conductivity of Energetic Polymers
    Guo X.-D.
    Tan B.-S.
    Huang Z.
    Tan, Bi-Sheng (tanbs_my@caep.cn), 2018, Institute of Chemical Materials, China Academy of Engineering Physics (26): : 80 - 85
  • [27] Thermal conductivity of polymers and polymer nanocomposites
    Huang, Congliang
    Qian, Xin
    Yang, Ronggui
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2018, 132 : 1 - 22
  • [28] On The Thermal Conductivity of Conjugated Polymers for Thermoelectrics
    Rodriguez-Martinez, Xabier
    Saiz, Fernan
    Dorling, Bernhard
    Marina, Sara
    Guo, Jiali
    Xu, Kai
    Chen, Hu
    Martin, Jaime
    McCulloch, Iain
    Rurali, Riccardo
    Reparaz, Juan Sebastian
    Campoy-Quiles, Mariano
    ADVANCED ENERGY MATERIALS, 2024, 14 (35)
  • [29] Anisotropic Thermal Properties of Solid Polymers
    K. Kurabayashi
    International Journal of Thermophysics, 2001, 22 : 277 - 288
  • [30] Preparation and properties of thermal conductive polyamide 66 composites
    Liu, Tao
    Li, Jingli
    Wang, Xianzhong
    Deng, Zhihua
    Yu, Xuejiang
    Lu, Ai
    Yu, Fengmei
    He, Jiangping
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2015, 28 (01) : 32 - 45