Thermal conductive polymers

被引:2
|
作者
Amesöder, S [1 ]
Ehrenstein, GW [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Kunststonfftech, D-91058 Erlangen, Germany
来源
ZEITSCHRIFT FUR METALLKUNDE | 2003年 / 94卷 / 05期
关键词
high filled polymers; polymer compounds; thermal conductivity; injection molding; measurements;
D O I
10.3139/146.030606
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The potential and significant influences of thermal conductive optimised thermoplastic polymers have been investigated. Using new polymer compounds with a high content of metal or ceramic filler, besides of several mechanical features of a part, it is also possible to integrate additional electric, magnetic or thermal functionalities. The increase of the thermal conductivity by controlled addition of metal or ceramic fillers is an innovative approach for direct adjustment of a plastic part's heat transport performance. To achieve a thermal conductivity that is of technical interest, a filler content of at least 60 vol.% is necessary. Besides of the filler content, important factors of influence are the thermal conductivity of the filler itself and the shape of the filler particles. When compared with globular copper particles, using filler particles with anisotropic shape, e. g. copper flakes with a high aspect ratio, it is possible to increase the thermal conductivity significantly. In the case of anisotropic fillers, orientations that result form the injections molding process lead to a higher thermal conductivity in the direction of the orientation, where the differences are of serious practical concern.
引用
收藏
页码:606 / 609
页数:4
相关论文
共 50 条
  • [1] Conductive polymers for thermoelectric power generation
    Bharti, Meetu
    Singh, Ajay
    Samanta, Soumen
    Aswal, D. K.
    PROGRESS IN MATERIALS SCIENCE, 2018, 93 : 270 - 310
  • [2] Effect of Thermal Conductive Fillers on the Flame Retardancy, Thermal Conductivity, and Thermal Behavior of Flame-Retardant and Thermal Conductive Polyamide 6
    Wang, Fang
    Shi, Wenbo
    Mai, Yuliang
    Liao, Bing
    MATERIALS, 2019, 12 (24)
  • [3] Preparing thermal conductive CB/PP composites by PCS process and thermal-conductive property study
    Hao, X. Y.
    Lai, M. B.
    Gai, G. S.
    Hua, X. Y.
    MATERIALS RESEARCH INNOVATIONS, 2014, 18 : 368 - 371
  • [4] Development of novel thermal conductive film
    Eriguchi, F
    Hotta, Y
    1999 INTERNATIONAL SYMPOSIUM ON MICROELECTRONICS, PROCEEDINGS, 1999, 3906 : 770 - 774
  • [5] Facile In-situ Polymerization of Thermotropic Liquid Crystalline Polymers as Thermally Conductive Matrix Materials
    Yeongkwon Kang
    Yejin Ahn
    Min Seon Kim
    Bong-Gi Kim
    Fibers and Polymers, 2018, 19 : 1143 - 1149
  • [6] Facile In-situ Polymerization of Thermotropic Liquid Crystalline Polymers as Thermally Conductive Matrix Materials
    Kang, Yeongkwon
    Ahn, Yejin
    Kim, Min Seon
    Kim, Bong-Gi
    FIBERS AND POLYMERS, 2018, 19 (06) : 1143 - 1149
  • [7] Effect of interfacial treatment on the thermal properties of thermal conductive plastics
    Zhang, L. M.
    Dai, G. C.
    EXPRESS POLYMER LETTERS, 2007, 1 (09): : 608 - 615
  • [8] Synergistic effects on the enhancement of thermal conductive properties of thermal greases
    He, Xuhua
    Wang, Yuechuan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (27)
  • [9] Thermal properties of automotive polymers III - Thermal characteristics and flammability of fire retardant polymers
    Isa, IAA
    Jodeh, SW
    MATERIALS RESEARCH INNOVATIONS, 2001, 4 (2-3) : 135 - 143
  • [10] Thermal conductive nylon 6 composites using hybrid fillers to construct a three-dimensional thermal conductive network
    Li, Qian
    Rao, Ranyi
    Hong, Xiansheng
    Hu, Hanwen
    Li, Yu
    Gong, Ziyu
    Zheng, Yuying
    POLYMER COMPOSITES, 2024, 45 (07) : 6169 - 6183