Study of thin film poly-crystalline CdTe solar cells presenting high acceptor concentrations achieved by in-situ arsenic doping

被引:75
作者
Kartopu, G. [1 ]
Oklobia, O. [1 ]
Turkay, D. [2 ,3 ]
Diercks, D. R. [4 ]
Gorman, B. P. [4 ]
Barrioz, V. [5 ]
Campbell, S. [5 ]
Major, J. D. [6 ,7 ]
Al Turkestani, M. K. [8 ]
Yerci, S. [2 ,3 ,9 ]
Barnes, T. M. [10 ]
Beattie, N. S. [5 ]
Zoppi, G. [5 ]
Jones, S. [1 ]
Irvine, S. J. C. [1 ]
机构
[1] Swansea Univ, OpTIC, Ctr Solar Energy Res, St Asaph Business Pk, St Asaph LL17 0JD, Wales
[2] Middle East Tech Univ, Ctr Solar Energy Res & Applicat GUNAM, TR-06800 Ankara, Turkey
[3] Middle East Tech Univ, Dept Micro & Nanotechnol, TR-06800 Ankara, Turkey
[4] Colorado Sch Mines, George S Ansell Dept Met & Mat Engn, Golden, CO 80401 USA
[5] Northumbria Univ, Dept Math Phys & Elect Engn, Ellison Bldg, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[6] Univ Liverpool, Stephenson Inst Renewable Energy, Liverpool L69 7ZF, Merseyside, England
[7] Univ Liverpool, Dept Phys, Liverpool L69 7ZF, Merseyside, England
[8] Umm Al Qura Univ, KSA, Dept Phys, Mecca Al Taif Rd, Mecca 24382, Saudi Arabia
[9] Middle East Tech Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
[10] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA
基金
英国工程与自然科学研究理事会;
关键词
CdTe; Group-V; Doping; Thin film; Photovoltaics; MOCVD; RECOMBINATION; TEMPERATURE;
D O I
10.1016/j.solmat.2019.02.025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Doping of CdTe using Group-V elements (As, P, and Sb) has gained interest in pursuit of increasing the cell voltage of CdTe thin film solar devices. Studies on bulk CdTe crystals have shown that much higher acceptor concentration than the traditional copper treatment is possible with As, P or Sb, enabled by high process temperature and/or rapid thermal quenching under Cd overpressure. We report a comprehensive study on in-situ As doping of poly-crystalline CdTe solar cells by MOCVD, whereby high acceptor densities, approaching 3 x 10(16) cm(-3) were achieved at low growth temperature of 390 degrees C. No As segregation could be detected at grain boundaries, even for 10(19) As cm(-3). A shallow acceptor level (+ 0.1 eV) due to As-Te substitutional doping and deep-level defects were observed at elevated As concentrations. Devices with variable As doping were analysed. Narrowing of the depletion layer, enhancement of bulk recombination, and reduction in device current and red response, albeit a small near infrared gain due to optical gap reduction, were observed at high concentrations. Device modelling indicated that the properties of the n-type window layer and associated interfacial recombination velocity are highly critical when the absorber doping is relatively high, demonstrating a route for obtaining high cell voltage.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 50 条
[1]   Self-compensation in arsenic doping of CdTe [J].
Ablekim, Tursun ;
Swain, Santosh K. ;
Yin, Wan-Jian ;
Zaunbrecher, Katherine ;
Burst, James ;
Barnes, Teresa M. ;
Kuciauskas, Darius ;
Wei, Su-Huai ;
Lynn, Kelvin G. .
SCIENTIFIC REPORTS, 2017, 7
[2]   An optical technique for measuring surface recombination velocity [J].
Ahrenkiel, R. K. ;
Johnston, S. W. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (05) :645-649
[3]   Obtaining Large Columnar CdTe Grains and Long Lifetime on Nanocrystalline CdSe, MgZnO, or CdS Layers [J].
Amarasinghe, Mahisha ;
Colegrove, Eric ;
Moseley, John ;
Moutinho, Helio ;
Albin, David ;
Duenow, Joel ;
Jensen, Soren ;
Kephart, Jason ;
Sampath, Walajabad ;
Sivananthan, Siva ;
Al-Jassim, Mowafak ;
Metzger, Wyatt K. .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)
[4]   Defect engineering in CdTe, based on the total energies of elementary defects [J].
Babentsov, V ;
Corregidor, V ;
Benz, K ;
Fiederle, M ;
Feltgen, T ;
Diéguez, E .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 458 (1-2) :85-89
[5]   Laser beam induced current measurements of Cd1-xZnxS/CdTe solar cells [J].
Brooks, W. S. M. ;
Irvine, S. J. C. ;
Barrioz, V. ;
Clayton, A. J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 101 :26-31
[6]   Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe [J].
Burst, James M. ;
Farrell, Stuart B. ;
Albin, David S. ;
Colegrove, Eric ;
Reese, Matthew O. ;
Duenow, Joel N. ;
Kuciauskas, Darius ;
Metzger, Wyatt K. .
APL MATERIALS, 2016, 4 (11)
[7]   Understanding arsenic incorporation in CdTe with atom probe tomography [J].
Burton, G. L. ;
Diercks, D. R. ;
Ogedengbe, O. S. ;
Jayathilaka, P. A. R. D. ;
Edirisooriya, M. ;
Myers, T. H. ;
Zaunbrecher, K. N. ;
Moseley, J. ;
Barnes, T. M. ;
Gorman, B. P. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 :68-75
[8]   Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe [J].
Colegrove, E. ;
Yang, J-H ;
Harvey, S. P. ;
Young, M. R. ;
Burst, J. M. ;
Duenow, J. N. ;
Albin, D. S. ;
Wei, S-H ;
Metzger, W. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (07)
[9]   Cu-related recombination in CdS/CdTe solar cells [J].
Demtsu, S. H. ;
Albin, D. S. ;
Sites, J. R. ;
Metzger, W. K. ;
Duda, A. .
THIN SOLID FILMS, 2008, 516 (08) :2251-2254
[10]   Electron Beam-Induced Deposition for Atom Probe Tomography Specimen Capping Layers [J].
Diercks, David R. ;
Gorman, Brian P. ;
Mulders, Johannes J. L. .
MICROSCOPY AND MICROANALYSIS, 2017, 23 (02) :321-328