GENERALIZED APPROXIMATE MESSAGE PASSING FOR COSPARSE ANALYSIS COMPRESSIVE SENSING

被引:0
作者
Borgerding, Mark [1 ]
Schniter, Philip [1 ]
Vila, Jeremy [1 ]
Rangan, Sundeep [2 ]
机构
[1] Ohio State Univ, Dept ECE, Columbus, OH 43210 USA
[2] NYU Polytech Inst, Dept ECE, Brooklyn, NY 11201 USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP) | 2015年
基金
美国国家科学基金会;
关键词
Approximate message passing; belief propagation; compressed sensing; PRIMAL-DUAL ALGORITHMS; SPARSITY;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In cosparse analysis compressive sensing (CS), one seeks to estimate a non-sparse signal vector from noisy sub-Nyquist linear measurements by exploiting the knowledge that a given linear transform of the signal is cosparse, i.e., has sufficiently many zeros. We propose a novel approach to cosparse analysis CS based on the generalized approximate message passing (GAMP) algorithm. Unlike other AMP-based approaches to this problem, ours works with a wide range of analysis operators and regularizers. In addition, we propose a novel l(0)-like soft-thresholder based on MMSE denoising for a spike-and-slab distribution with an infinite-variance slab. Numerical demonstrations on synthetic and practical datasets demonstrate advantages over existing AMP-based, greedy, and reweighted-l(1) approaches.
引用
收藏
页码:3756 / 3760
页数:5
相关论文
共 32 条
[21]   State evolution for general approximate message passing algorithms, with applications to spatial coupling [J].
Javanmard, Adel ;
Montanari, Andrea .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2013, 2 (02) :115-144
[22]   Message-Passing De-Quantization With Applications to Compressed Sensing [J].
Kamilov, Ulugbek S. ;
Goyal, Vivek K. ;
Rangan, Sundeep .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (12) :6270-6281
[23]  
Krzakala F, 2014, IEEE INT SYMP INFO, P1499, DOI 10.1109/ISIT.2014.6875083
[24]   The cosparse analysis model and algorithms [J].
Nam, S. ;
Davies, M. E. ;
Elad, M. ;
Gribonval, R. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (01) :30-56
[25]  
Rangan S, 2011, IEEE INT SYMP INFO
[26]  
Rangan S, 2014, IEEE INT SYMP INFO, P236, DOI 10.1109/ISIT.2014.6874830
[27]  
Rangan S, 2013, IEEE INT SYMP INFO, P664, DOI 10.1109/ISIT.2013.6620309
[28]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[29]  
Schniter P, 2012, ANN ALLERTON CONF, P815, DOI 10.1109/Allerton.2012.6483302
[30]   IMAGE RECOVERY FROM DATA ACQUIRED WITH A CHARGE-COUPLED-DEVICE CAMERA [J].
SNYDER, DL ;
HAMMOUD, AM ;
WHITE, RL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (05) :1014-1023