Robust Localization of the Best Error with Finite Elements in the Reaction-Diffusion Norm

被引:4
作者
Tantardini, Francesca [1 ]
Veeser, Andreas [2 ]
Verfuerth, Ruediger [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44801 Bochum, Germany
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Approximation with continuous piecewise polynomials; Finite element approximation; Localization of best errors; Robustness; Adaptive tree approximation; Reaction-diffusion norm; MESH DEPENDENT NORMS; APPROXIMATION; REFINEMENT; BISECTION;
D O I
10.1007/s00365-015-9291-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the approximation in the reaction-diffusion norm with continuous finite elements and prove that the best error is equivalent to a sum of the local best errors on pairs of elements. The equivalence constants do not depend on the ratio of diffusion to reaction. We illustrate the usefulness of this result with two applications. First, we discuss robustness and locking properties of continuous finite elements with respect to the reaction-diffusion norm. Second, we derive local error functionals that ensure robust performance of adaptive tree approximation in the reaction-diffusion norm.
引用
收藏
页码:313 / 347
页数:35
相关论文
共 24 条
[1]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[2]   ANALYSIS OF MIXED METHODS USING MESH DEPENDENT NORMS [J].
BABUSKA, I ;
OSBORN, J ;
PITARANTA, J .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1039-1062
[3]   ON LOCKING AND ROBUSTNESS IN THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (05) :1261-1293
[4]   ANALYSIS OF FINITE-ELEMENT METHODS FOR 2ND ORDER BOUNDARY-VALUE-PROBLEMS USING MESH DEPENDENT NORMS [J].
BABUSKA, I ;
OSBORN, J .
NUMERISCHE MATHEMATIK, 1980, 34 (01) :41-62
[5]  
Bebendorf M, 2003, Z ANAL ANWEND, V22, P751
[6]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[7]   Fast computation in adaptive tree approximation [J].
Binev, P ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :193-217
[8]  
Binev P., 2014, TREE APPROX IN PRESS
[9]  
Binev P., 2007, OBERWOLFACH REP, V29, P1669
[10]  
Ciarlet PG., 1991, Handbook of numerical analysis, VVol. II, P17