Computational study of colipase interaction with lipid droplets and bile salt micelles

被引:14
作者
Kerfelec, Brigitte [2 ,3 ,4 ]
Allouche, Maya [2 ,3 ,4 ]
Colin, Damien [2 ,3 ,4 ]
Van Eyck, Marie Helene [5 ]
Brasseur, Robert [1 ]
Thomas, Annick [1 ]
机构
[1] Fac Agron, CBMN, B-5030 Gembloux, Belgium
[2] INRA, UMR Nutriments Lipid & Prevent Malad Metab 1260, F-13385 Marseille, France
[3] INSERM, U476, F-13385 Marseille, France
[4] Univ Aix Marseille 2, Univ Aix Marseille 1, Fac Med, IPHM IFR 125, F-13385 Marseille, France
[5] Biosiris, B-5032 Gembloux, Belgium
关键词
pancreatic colipase; interface; interfacial orientation; hydrophobicity; sequence analysis; accessible surface; protein plasticity; protein-lipid interaction;
D O I
10.1002/prot.22109
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Colipase is a key element in the lipase-catalyzed hydrolysis of dietary lipids. Although devoid of enzymatic activity, colipase promotes the pancreatic lipase activity in physiological intestinal conditions by anchoring the enzyme at the surface of lipid droplets. Analysis of structures of NMR colipase models and simulations of their interactions with various lipid aggregates, lipid droplet, and bile salt micelle, were carried out to determine and to map the lipid binding sites on colipase. We show that the micelle and the oil droplet bind to the same side of colipase 3D structure, mainly the hydrophobic fingers. Moreover, it appears that, although colipase has a single direction of interaction with a lipid interface, it does not bind in a specific way but rather oscillates between different positions. Indeed, different NMR models of colipase insert different fragments of sequence in the interface, either simultaneously or independently. This supports the idea that colipase finger plasticity may be crucial to adapt the lipase activity to different lipid aggregates.
引用
收藏
页码:828 / 838
页数:11
相关论文
共 59 条
[1]   NETASA: neural network based prediction of solvent accessibility [J].
Ahmad, S ;
Gromiha, MM .
BIOINFORMATICS, 2002, 18 (06) :819-824
[2]   Computer simulations of membrane proteins [J].
Ash, WL ;
Zlomislic, MR ;
Oloo, EO ;
Tieleman, DP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1666 (1-2) :158-189
[3]   Ion pairing between lipase and colipase plays a critical role in catalysis [J].
Ayvazian, L ;
Crenon, I ;
Hermoso, J ;
Pignol, D ;
Chapus, C ;
Kerfelec, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33604-33609
[4]   Peptide insertion, positioning, and stabilization in a membrane: Insight from an all-atom molecular dynamics simulation [J].
Babakhani, Arneh ;
Gorfe, Alemayehu A. ;
Gullingsrud, Justin ;
Kim, Judy E. ;
McCammon, J. Andrew .
BIOPOLYMERS, 2007, 85 (5-6) :490-497
[5]   Implicit solvent model studies of the interactions of the influenza hemagglutinin fusion peptide with lipid bilayers [J].
Bechor, D ;
Ben-Tal, N .
BIOPHYSICAL JOURNAL, 2001, 80 (02) :643-655
[6]   Coarse-grained molecular dynamics simulations of membrane proteins and peptides [J].
Bond, Peter J. ;
Holyoake, John ;
Ivetac, Anthony ;
Khalid, Syma ;
Sansom, Mark S. P. .
JOURNAL OF STRUCTURAL BIOLOGY, 2007, 157 (03) :593-605
[7]   BINDING OF PANCREATIC COLIPASE TO INTERFACES - EFFECTS OF DETERGENTS [J].
BORGSTROM, B .
FEBS LETTERS, 1976, 71 (02) :201-204
[8]   POLAR INTERACTIONS BETWEEN PANCREATIC LIPASE, COLIPASE AND TRIGLYCERIDE SUBSTRATE [J].
BORGSTROM, B ;
DONNER, J .
FEBS LETTERS, 1977, 83 (01) :23-26
[9]   EVIDENCE FOR A PANCREATIC PRO-COLIPASE AND ITS ACTIVATION BY TRYPSIN [J].
BORGSTROM, B ;
WIELOCH, T ;
ERLANSONALBERTSSON, C .
FEBS LETTERS, 1979, 108 (02) :407-410
[10]  
BRASSEUR R, 1991, J BIOL CHEM, V266, P16120