Existence and partial approximate controllability of nonlinear Riemann-Liouville fractional systems of higher order

被引:11
作者
Haq, Abdul [1 ]
Sukavanam, N. [2 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Dept Math, Kattankulathur 603203, Tamil Nadu, India
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, India
关键词
Nonlinear system; Fractional derivative; Fixed point; Mild solution; Controllability; EVOLUTION-EQUATIONS; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.chaos.2022.112783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies the existence and partial approximate controllability of higher order nonlocal semilin-ear fractional differential equations with Riemann-Liouville derivatives avoiding Lipschitz assumptions of nonlinear operator and nonlocal functions. To derive the existence result, we make approximate systems corresponding to the original system. For this, we construct the mild solutions in terms of fractional resolvent. Then, we prove the partial approximate controllability of the nonlinear system by using the obtained existence result. Finally, we give an example to illustrate the established theory.
引用
收藏
页数:9
相关论文
共 50 条
[41]   The existence and stability results of multi-order boundary value problems involved Riemann-Liouville fractional operators [J].
Hammad, Hasanen A. ;
Aydi, Hassen ;
De la Sen, Manuel .
AIMS MATHEMATICS, 2023, 8 (05) :11325-11349
[42]   Geometric Interpretation for Riemann-Liouville Fractional-Order Integral [J].
Bai, Lu ;
Xue, Dingyu ;
Meng, Li .
PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, :3225-3230
[43]   A NOTE ON RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES [J].
Carbotti, Alessandro ;
Comi, Giovanni E. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) :17-54
[44]   ON THE SET OF SOLUTIONS OF FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL INCLUSIONS [J].
Abbas, Said ;
Benchohra, Mouffak .
DEMONSTRATIO MATHEMATICA, 2013, 46 (02) :271-281
[45]   Controllability of nonlinear higher order fractional dynamical systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
NONLINEAR DYNAMICS, 2013, 71 (04) :605-612
[46]   Controllability of nonlinear higher order fractional dynamical systems [J].
K. Balachandran ;
V. Govindaraj ;
L. Rodríguez-Germá ;
J. J. Trujillo .
Nonlinear Dynamics, 2013, 71 :605-612
[47]   TIME OPTIMAL CONTROLS FOR FRACTIONAL DIFFERENTIAL SYSTEMS WITH RIEMANN-LIOUVILLE DERIVATIVES [J].
Lian, TingTing ;
Fan, ZhenBin ;
Li, Gang .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (06) :1524-1541
[48]   RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS [J].
Mei, Zhan-Dong ;
Peng, Ji-Gen .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[49]   REGULARITY OF MILD SOLUTIONS TO FRACTIONAL CAUCHY PROBLEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE [J].
Li, Ya-Ning ;
Sun, Hong-Rui .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
[50]   The general solution of impulsive systems with Riemann-Liouville fractional derivatives [J].
Zhang, Xianmin ;
Ding, Wenbin ;
Peng, Hui ;
Liu, Zuohua ;
Shu, Tong .
OPEN MATHEMATICS, 2016, 14 :1125-1137