Adaptive eigenvalue computation: complexity estimates

被引:19
作者
Dahmen, Wolfgang [2 ]
Rohwedder, Thorsten [1 ]
Schneider, Reinhold [1 ]
Zeiser, Andreas [1 ]
机构
[1] Tech Univ Berlin, D-10623 Berlin, Germany
[2] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
关键词
D O I
10.1007/s00211-008-0159-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the design and analysis of a fully adaptive eigenvalue solver for linear symmetric operators. After transforming the original problem into an equivalent one formulated on l(2), the space of square summable sequences, the problem becomes sufficiently well conditioned so that a gradient type iteration can be shown to reduce the error by some fixed factor per step. It then remains to realize these (ideal) iterations within suitable dynamically updated error tolerances. It is shown under which circumstances the adaptive scheme exhibits in some sense asymptotically optimal complexity.
引用
收藏
页码:277 / 312
页数:36
相关论文
共 27 条
[1]  
Babuska I., 1991, Finite Element Methods, V2, P641
[2]  
BARINKA A, 2004, THESIS RWTH AACHEN
[3]   A subspace preconditioning algorithm for eigenvector/eigenvalue computation [J].
Bramble, JH ;
Pasciak, JE ;
Knyazev, AV .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) :159-189
[4]  
Chatelin F., 1993, EIGENVALUES MATRICES
[5]  
Ciarlet PG., 1991, Finite element methods (Part1), handbook of numerical analysis, P21
[6]  
Cohen A, 2001, MATH COMPUT, V70, P27, DOI 10.1090/S0025-5718-00-01252-7
[7]   Adaptive wavelet schemes for nonlinear variational problems [J].
Cohen, A ;
Dahmen, W ;
Devore, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (05) :1785-1823
[8]   Adaptive wavelet methods II - Beyond the elliptic case [J].
Cohen, A ;
Dahmen, W ;
DeVore, R .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (03) :203-245
[9]  
COHEN A, 2004, ENCY COMPUTATIONAL M, P157
[10]  
Cohen A., 2003, STUDIES MATH ITS APP, V32