Advances in Hyperspectral Image and Signal Processing A comprehensive overview of the state of the art

被引:679
作者
Ghamisi, Pedram [1 ,2 ]
Yokoya, Naoto [3 ]
Li, Jun [4 ]
Liao, Wenzhi [5 ]
Liu, Sicong [6 ]
Plaza, Javier [7 ]
Rasti, Behnood [8 ,9 ]
Plaza, Antonio [7 ]
机构
[1] German Aerosp Ctr, Remote Sensing Technol Inst, Munich, Germany
[2] Tech Univ Munich, Signal Proc Earth Observat, Munich, Germany
[3] Univ Tokyo, Dept Adv Interdisciplinary Studies, Tokyo, Japan
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Urbanizat & Geosimulat, Ctr Integrated Geog Informat Anal, Sch Geog & Planning, Guangzhou, Guangdong, Peoples R China
[5] Univ Ghent, Dept Telecommun & Informat Proc, Ghent, Belgium
[6] Tongji Univ, Coll Surveying & Geoinformat, Shanghai, Peoples R China
[7] Univ Extremadura, Dept Technol Comp & Commun, Badajoz, Spain
[8] Keilir Inst Technol, Reykjanesbaer, Iceland
[9] Univ Iceland, Dept Elect & Comp Engn, Reykjavik, Iceland
关键词
SPECTRAL-SPATIAL CLASSIFICATION; WEIGHTED FEATURE-EXTRACTION; EXTREME-LEARNING-MACHINE; SUPPORT VECTOR MACHINES; REMOTE-SENSING IMAGES; FEATURE-SELECTION; DIMENSIONALITY REDUCTION; ATTRIBUTE PROFILES; NEURAL-NETWORK; ENDMEMBER IDENTIFICATION;
D O I
10.1109/MGRS.2017.2762087
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recent advances in airborne and spaceborne hyperspectral imaging technology have provided end users with rich spectral, spatial, and temporal information. They have made a plethora of applications feasible for the analysis of large areas of the Earth?s surface. However, a significant number of factors-such as the high dimensions and size of the hyperspectral data, the lack of training samples, mixed pixels, light-scattering mechanisms in the acquisition process, and different atmospheric and geometric distortions-make such data inherently nonlinear and complex, which poses major challenges for existing methodologies to effectively process and analyze the data sets. Hence, rigorous and innovative methodologies are required for hyperspectral image (HSI) and signal processing and have become a center of attention for researchers worldwide. © 2013 IEEE.
引用
收藏
页码:37 / 78
页数:42
相关论文
共 332 条
[31]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[32]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[33]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[34]   Object based image analysis for remote sensing [J].
Blaschke, T. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) :2-16
[35]  
Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962
[36]   Kernel Multivariate Spectral-Spatial Analysis of Hyperspectral Data [J].
Borhani, Mostafa ;
Ghassemian, Hassan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2418-2426
[37]   A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images [J].
Bovolo, Francesca ;
Marchesi, Silvia ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (06) :2196-2212
[38]   Linear spectral mixture models and support vector machines for remote sensing [J].
Brown, M ;
Lewis, HG ;
Gunn, SR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (05) :2346-2360
[39]   Automatic analysis of the difference image for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1171-1182
[40]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373