Advances in Hyperspectral Image and Signal Processing A comprehensive overview of the state of the art

被引:679
作者
Ghamisi, Pedram [1 ,2 ]
Yokoya, Naoto [3 ]
Li, Jun [4 ]
Liao, Wenzhi [5 ]
Liu, Sicong [6 ]
Plaza, Javier [7 ]
Rasti, Behnood [8 ,9 ]
Plaza, Antonio [7 ]
机构
[1] German Aerosp Ctr, Remote Sensing Technol Inst, Munich, Germany
[2] Tech Univ Munich, Signal Proc Earth Observat, Munich, Germany
[3] Univ Tokyo, Dept Adv Interdisciplinary Studies, Tokyo, Japan
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Urbanizat & Geosimulat, Ctr Integrated Geog Informat Anal, Sch Geog & Planning, Guangzhou, Guangdong, Peoples R China
[5] Univ Ghent, Dept Telecommun & Informat Proc, Ghent, Belgium
[6] Tongji Univ, Coll Surveying & Geoinformat, Shanghai, Peoples R China
[7] Univ Extremadura, Dept Technol Comp & Commun, Badajoz, Spain
[8] Keilir Inst Technol, Reykjanesbaer, Iceland
[9] Univ Iceland, Dept Elect & Comp Engn, Reykjavik, Iceland
关键词
SPECTRAL-SPATIAL CLASSIFICATION; WEIGHTED FEATURE-EXTRACTION; EXTREME-LEARNING-MACHINE; SUPPORT VECTOR MACHINES; REMOTE-SENSING IMAGES; FEATURE-SELECTION; DIMENSIONALITY REDUCTION; ATTRIBUTE PROFILES; NEURAL-NETWORK; ENDMEMBER IDENTIFICATION;
D O I
10.1109/MGRS.2017.2762087
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recent advances in airborne and spaceborne hyperspectral imaging technology have provided end users with rich spectral, spatial, and temporal information. They have made a plethora of applications feasible for the analysis of large areas of the Earth?s surface. However, a significant number of factors-such as the high dimensions and size of the hyperspectral data, the lack of training samples, mixed pixels, light-scattering mechanisms in the acquisition process, and different atmospheric and geometric distortions-make such data inherently nonlinear and complex, which poses major challenges for existing methodologies to effectively process and analyze the data sets. Hence, rigorous and innovative methodologies are required for hyperspectral image (HSI) and signal processing and have become a center of attention for researchers worldwide. © 2013 IEEE.
引用
收藏
页码:37 / 78
页数:42
相关论文
共 332 条
[1]   Subspace-Based Striping Noise Reduction in Hyperspectral Images [J].
Acito, N. ;
Diani, M. ;
Corsini, G. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (04) :1325-1342
[2]   Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images [J].
Acito, Nicola ;
Diani, Marco ;
Corsini, Giovanni .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (08) :2957-2971
[3]   Exploiting spatiospectral correlation for impulse denoising in hyperspectral images [J].
Aggarwal, Hemant Kumar ;
Majumdar, Angshul .
JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (01)
[4]   MTF-tailored multiscale fusion of high-resolution MS and pan imagery [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Garzelli, A. ;
Selva, M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) :591-596
[5]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[6]   Super-resolution reconstruction of hyperspectral images [J].
Akgun, T ;
Altunbasak, Y ;
Mersereau, RM .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) :1860-1875
[7]   Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution [J].
Akhtar, Naveed ;
Shafait, Faisal ;
Mian, Ajmal .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :63-78
[8]  
Alparone L., 2015, Remote Sensing Image Fusion
[9]   Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes [J].
Altmann, Yoann ;
Dobigeon, Nicolas ;
McLaughlin, Steve ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (10) :2442-2453
[10]   Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery [J].
Altmann, Yoann ;
Halimi, Abderrahim ;
Dobigeon, Nicolas ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) :3017-3025