HOTPERIODS: Visual Correlation Analysis of Interval Data

被引:0
作者
Duran, Necati [1 ]
Mahlknecht, Giovanni [1 ]
Dignos, Anton [1 ]
Gamper, Johann [1 ]
机构
[1] Free Univ Bozen Bolzano, Fac Comp Sci, Bolzano, Italy
来源
SSTD '19 - PROCEEDINGS OF THE 16TH INTERNATIONAL SYMPOSIUM ON SPATIAL AND TEMPORAL DATABASES | 2019年
关键词
Correlation Analysis; Data Visualization; Temporal Data; Period Data; Interval Data;
D O I
10.1145/3340964.3340989
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the ever increasing amount and complexity of data, visual analysis becomes a fundamental tool to spot correlations and other relationships in data. Most of the previous techniques (e.g., scatter plots or heatmaps) focus on point data, i.e., data with point measures, such as prices or volumes. In this demo paper, we focus on data with interval measures, that is data where measures consist of an interval or range of values, such as price ranges or time intervals. We present a tool, termed HOTPERIODS, which allows to visualize correlations between two interval measures in the two-dimensional space, where the two measures represent a rectangle. To visualize such data, we first perform a rectangle aggregation. The result of this aggregation is a density matrix, where each cell stores the number of rectangles that cover the corresponding points in space. For the visualization of the density matrix, color-coding is used to represent different density values similar to heatmaps. We illustrate the usefulness of HOTPERIODS for the analysis of stock market data and tourism data, both of which show interval measures.
引用
收藏
页码:178 / 181
页数:4
相关论文
共 13 条
[1]  
Behrisch M, 2012, IEEE CONF VIS ANAL, P209, DOI 10.1109/VAST.2012.6400549
[2]   TIME○DIFF: a Visual Approach to Compare Period Data [J].
Del Fatto, Vincenzo ;
Dignos, Anton ;
Gamper, Johann .
2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, :38-43
[3]  
Horsburgh J. S., 2016, TIME SERIES ANAL INT
[4]   M4: A Visualization-Oriented Time Series Data Aggregation [J].
Jugel, Uwe ;
Jerzak, Zbigniew ;
Hackenbroich, Gregor ;
Markl, Volker .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (10) :797-808
[5]  
Kaufmann M, 2015, PROC INT CONF DATA, P471, DOI 10.1109/ICDE.2015.7113307
[6]  
KLINE N, 1995, PROC INT CONF DATA, P222, DOI 10.1109/ICDE.1995.380389
[7]  
Mahlknecht G., 2017, PROC SSDBM 2017
[8]  
Moon B, 2003, IEEE T KNOWL DATA EN, V15, P744, DOI 10.1109/TKDE.2003.1198403
[9]  
Perrot A, 2015, SYMP LARG DATA ANAL, P99, DOI 10.1109/LDAV.2015.7348077
[10]   Visualization of Time-Series Sensor Data to Inform the Design of Just-In-Time Adaptive Stress Interventions [J].
Sharmin, Moushumi ;
Raij, Andrew ;
Epstien, David ;
Nahum-Shani, Inbal ;
Beck, J. Gayle ;
Vhaduri, Sudip ;
Preston, Kenzie ;
Kumar, Santosh .
PROCEEDINGS OF THE 2015 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING (UBICOMP 2015), 2015, :505-516