Real-time detection of influenza A virus using semiconductor nanophotonics

被引:44
|
作者
Lepage, Dominic [1 ]
Jimenez, Alvaro [1 ]
Beauvais, Jacques [1 ]
Dubowski, Jan J. [1 ]
机构
[1] Univ Sherbrooke, Dept Elect & Comp Engn, Lab Quantum Semicond & Photon Based BioNanotechno, Interdisciplinary Inst Technol Innovat 3IT, Sherbrooke, PQ J1K 2R1, Canada
来源
LIGHT-SCIENCE & APPLICATIONS | 2013年 / 2卷
基金
加拿大自然科学与工程研究理事会;
关键词
GaAs/AlGaAs quantum well device; hyperspectral imaging technology; influenza A virus; integrated surface plasmon resonance biosensor; SURFACE-PLASMON RESONANCE; REFRACTIVE-INDEX; SENSITIVITY; BIOSENSORS;
D O I
10.1038/lsa.2013.18
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Modern miniaturization and the digitalization of characterization instruments greatly facilitate the diffusion of technological advances in new fields and generate innovative applications. The concept of a portable, inexpensive and semi-automated biosensing platform, or lab-on-a-chip, is a vision shared by many researchers and venture industries. Under this scope, we present a semiconductor monolithic integration approach to conduct surface plasmon resonance studies. This technology is already commonly used for biochemical characterization in pharmaceutical industries, but we have reduced the technological platform to a few nanometers in scale on a semiconductor chip. We evaluate the signal quality of this nanophotonic device using hyperspectral-imaging technology, and we compare its performance with that of a standard prism-based commercial system. Two standard biochemical agents are employed for this characterization study: bovine serum albumin and inactivated influenza A virus. Time resolutions of data acquisition varying between 360 and 2.2 s are presented, yielding 2.7x10(-5)-1.5x10(-6) RIU resolutions, respectively.
引用
收藏
页码:e62 / e62
页数:8
相关论文
共 50 条
  • [31] Modelling the limit of detection in real-time quantitative PCR
    Burns, M.
    Valdivia, H.
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2008, 226 (06) : 1513 - 1524
  • [32] Immunosensors-The Future of Pathogen Real-Time Detection
    Janik-Karpinska, Edyta
    Ceremuga, Michal
    Niemcewicz, Marcin
    Podogrocki, Marcin
    Stela, Maksymilian
    Cichon, Natalia
    Bijak, Michal
    SENSORS, 2022, 22 (24)
  • [33] Detection Limits for Real-Time Source Water Monitoring Using Indigenous Freshwater Microalgae
    Rodriguez, Miguel, Jr.
    Greenbaum, Elias
    WATER ENVIRONMENT RESEARCH, 2009, 81 (11) : 2363 - 2371
  • [34] Using liquid crystals for the real-time detection of urease at aqueous/liquid crystal interfaces
    Hu, Qiong-Zheng
    Jang, Chang-Hyun
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (02) : 969 - 975
  • [35] Real-Time Detection of Circulating Tumor Cells in Bloodstream Using Plasmonic Fiber Sensors
    Zhu, Shaodi
    Xie, Zhenming
    Chen, Yuzhi
    Liu, Shiyue
    Kwan, Yiu-Wa
    Zeng, Shuwen
    Yuan, Wu
    Ho, Ho-Pui
    BIOSENSORS-BASEL, 2022, 12 (11):
  • [36] Rapid detection of goose hemorrhagic polyomavirus using TaqMan quantitative real-time PCR
    Wan, Chunhe
    Cheng, Longfei
    Fu, Guanghua
    Chen, Cuiteng
    Liu, Rongchang
    Shi, Shaohua
    Chen, Hongmei
    Fu, Qiuling
    Huang, Yu
    MOLECULAR AND CELLULAR PROBES, 2018, 39 : 61 - 64
  • [37] Nanostructured Photonic Hydrogels for Real-Time Alcohol Detection
    Ahmed, Israr
    Elsherif, Mohamed
    Park, Seongjun
    Yetisen, Ali K.
    Butt, Haider
    ACS APPLIED NANO MATERIALS, 2022, 5 (06) : 7744 - 7753
  • [38] Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection
    Liu, Fei
    Kim, Yo Han
    Cheon, Doo Sung
    Seo, Tae Seok
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 186 : 252 - 257
  • [39] Evaluation of the pooling of swabs for real-time PCR detection of low titre shedding of low pathogenicity avian influenza in turkeys
    Arnold, M. E.
    Slomka, M. J.
    Coward, V. J.
    Mahmood, S.
    Raleigh, P. J.
    Brown, I. H.
    EPIDEMIOLOGY AND INFECTION, 2013, 141 (06) : 1286 - 1297
  • [40] Modelling the limit of detection in real-time quantitative PCR
    M. Burns
    H. Valdivia
    European Food Research and Technology, 2008, 226 : 1513 - 1524