Improving Hypernasality Estimation with Automatic Speech Recognition in Cleft Palate Speech

被引:0
|
作者
Song, Kaitao [1 ]
Wan, Teng [2 ]
Wang, Bixia [2 ]
Jiang, Huiqiang [1 ]
Qiu, Luna [1 ]
Xu, Jiahang [1 ]
Jiang, Liping [2 ]
Lou, Qun [2 ]
Yang, Yuqing [1 ]
Li, Dongsheng [1 ]
Wang, Xudong [2 ]
Qiu, Lili [1 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Shanghai Jiao Tong Univ, Dept Oral & Craniomaxillofacial Surg, Shanghai Ninth Peoples Hosp, Sch Med, Shanghai, Peoples R China
来源
INTERSPEECH 2022 | 2022年
关键词
Cleft Palate; Hypernasality; Automatic Speech Recognition; ACOUSTIC ANALYSIS; LIP; CHILDREN;
D O I
10.21437/Interspeech.2022-438
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Hypernasality is an abnormal resonance in human speech production, especially in patients with craniofacial anomalies such as cleft palate. In clinical application, hypernasality estimation is crucial in cleft palate diagnosis, as its results determine the subsequent surgery and additional speech therapy. Therefore, designing an automatic hypernasality assessment method will facilitate speech-language pathologists to make precise diagnoses. Existing methods for hypernasality estimation only conduct acoustic analysis based on low-resource cleft palate dataset, by using statistical or neural network-based features. In this paper, we propose a novel approach that uses automatic speech recognition model to improve hypernasality estimation. Specifically, we first pre-train an encoder-decoder framework in an automatic speech recognition (ASR) objective by using speech-to-text dataset, and then fine-tune ASR encoder on the cleft palate dataset for hypernasality estimation. Benefiting from such design, our model for hypernasality estimation can enjoy the advantages of ASR model: 1) compared with low-resource cleft palate dataset, the ASR task usually includes large-scale speech data in the general domain, which enables better model generalization; 2) the text annotations in ASR dataset guide model to extract better acoustic features. Experimental results on two cleft palate datasets demonstrate that our method achieves superior performance compared with previous approaches.
引用
收藏
页码:4820 / 4824
页数:5
相关论文
共 50 条
  • [41] Improving Readability for Automatic Speech Recognition Transcription
    Liao, Junwei
    Eskimez, Sefik
    Lu, Liyang
    Shi, Yu
    Gong, Ming
    Shou, Linjun
    Qu, Hong
    Zeng, Michael
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (05)
  • [42] Optimizing speech outcomes for cleft palate
    Lindeborg, Michael M.
    Shakya, Pramila
    Rai, Shankar Man
    Shaye, David A.
    CURRENT OPINION IN OTOLARYNGOLOGY & HEAD AND NECK SURGERY, 2020, 28 (04) : 206 - 211
  • [43] Surgery for speech in cleft palate patients
    Ysunza, A
    Pamplona, MC
    Molina, F
    Drucker, M
    Felemovicius, J
    Ramírez, E
    Patiño, C
    INTERNATIONAL JOURNAL OF PEDIATRIC OTORHINOLARYNGOLOGY, 2004, 68 (12) : 1499 - 1505
  • [44] Spectrographic measures of the speech of young children with cleft lip and cleft palate
    Casal, C
    Domínguez, C
    Fernández, A
    Sarget, R
    Martínez-Celdrán, E
    Sentís-Vilalta, J
    Gay-Escoda, C
    FOLIA PHONIATRICA ET LOGOPAEDICA, 2002, 54 (05) : 247 - 257
  • [45] Does the recording medium influence phonetic transcription of cleft palate speech?
    Klinto, Kristina
    Lohmander, Anette
    INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS, 2017, 52 (04) : 440 - 449
  • [46] Limited Chances of Speech Improvement After Late Cleft Palate Repair
    Schoenmeyr, Bjoern
    Wendby, Lisa
    Sharma, Mitali
    Raud-Westberg, Liisi
    Restrepo, Carolina
    Campbell, Alex
    JOURNAL OF CRANIOFACIAL SURGERY, 2015, 26 (04) : 1182 - 1185
  • [47] Subjective and Objective Evaluation of Speech in Adult Patients With Repaired Cleft Palate
    Lou, Qun
    Wang, Xudong
    Chen, Yang
    Wang, Guomin
    Jiang, Liping
    Liu, Qiong
    JOURNAL OF CRANIOFACIAL SURGERY, 2023, 34 (06) : E551 - E556
  • [48] Pharyngeal obturator and speech outcomes in cleft palate patients
    Pegoraro-Krook, Maria Ines
    Rosa, Raquel Rodrigues
    Aferri, Homero C.
    Felix de Andrade, Laura Katarine
    Dutka, Jeniffer de C. R.
    BRAZILIAN JOURNAL OF OTORHINOLARYNGOLOGY, 2022, 88 (02) : 187 - 193
  • [49] Impaired speech input and output processing abilities in children with cleft palate speech disorder
    Yang, Linrui
    Mu, Yue
    Zhai, Yuxiang
    Chen, Renji
    INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS, 2024, 59 (05) : 1906 - 1922
  • [50] Otologic, audiometric and speech findings in patients undergoing surgery for cleft palate
    Garcia-Vaquero, Cristina
    Mir, Cristina
    Graterol, Domingo
    Ortiz, Nuria
    Isabel Rochera-Villach, Maria
    LLeonart, Matilde E.
    Lorente, Juan
    BMC PEDIATRICS, 2018, 18