Breaking of PT Symmetry in Bounded and Unbounded Scattering Systems

被引:105
作者
Ambichl, Philipp [1 ]
Makris, Konstantinos G. [1 ,2 ]
Ge, Li [3 ]
Chong, Yidong [4 ]
Stone, A. Douglas [5 ]
Rotter, Stefan [1 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA
[4] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore
[5] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
基金
奥地利科学基金会; 新加坡国家研究基金会; 美国国家科学基金会;
关键词
COMPLEX PERIODIC POTENTIALS; SEMICLASSICAL QUANTIZATION; SPECTRA; BILLIARDS;
D O I
10.1103/PhysRevX.3.041030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
PT-symmetric scattering systems with balanced gain and loss can undergo a symmetry-breaking transition in which the eigenvalues of the nonunitary scattering matrix change their phase shifts from real to complex values. We relate the PT-symmetry-breaking points of such an unbounded scattering system to those of the underlying bounded systems. In particular, we show how the PT thresholds in the scattering matrix of the unbounded system translate into analogous transitions in the Robin boundary conditions of the corresponding bounded systems. Based on this relation, we argue and then confirm that the PT transitions in the scattering matrix are, under very general conditions, entirely insensitive to a variable coupling strength between the bounded region and the unbounded asymptotic region, a result that can be tested experimentally and visualized using the concept of Smith charts.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Faster than hermitian quantum mechanics [J].
Bender, Carl M. ;
Brody, Dorje C. ;
Jones, Hugh F. ;
Meister, Bernhard K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[2]   Observation of PT phase transition in a simple mechanical system [J].
Bender, Carl M. ;
Berntson, Bjorn K. ;
Parker, David ;
Samuel, E. .
AMERICAN JOURNAL OF PHYSICS, 2013, 81 (03) :173-179
[3]   Complex periodic potentials with real band spectra [J].
Bender, CM ;
Dunne, GV ;
Meisinger, PN .
PHYSICS LETTERS A, 1999, 252 (05) :272-276
[4]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard [J].
Bittner, S. ;
Dietz, B. ;
Guenther, U. ;
Harney, H. L. ;
Miski-Oglu, M. ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[7]   Scattering in PT-symmetric quantum mechanics [J].
Cannata, Francesco ;
Dedonder, Jean-Pierre ;
Ventura, Alberto .
ANNALS OF PHYSICS, 2007, 322 (02) :397-433
[8]   PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems [J].
Chong, Y. D. ;
Ge, Li ;
Stone, A. Douglas .
PHYSICAL REVIEW LETTERS, 2011, 106 (09)
[9]   SEMICLASSICAL QUANTIZATION OF CHAOTIC BILLIARDS - A SCATTERING-THEORY APPROACH [J].
DORON, E ;
SMILANSKY, U .
NONLINEARITY, 1992, 5 (05) :1055-1084
[10]   Theory of coupled optical PT-symmetric structures [J].
El-Ganainy, R. ;
Makris, K. G. ;
Christodoulides, D. N. ;
Musslimani, Ziad H. .
OPTICS LETTERS, 2007, 32 (17) :2632-2634