ON REALIZATION OF GENERALIZED EFFECT ALGEBRAS

被引:4
作者
Paseka, Jan [1 ]
机构
[1] Masaryk Univ, Dept Math & Stat, Fac Sci, CZ-61137 Brno, Czech Republic
关键词
non-classical logics; orthomodular lattices; effect algebras; generalized effect algebras; states; generalized states; HILBERT-SPACES;
D O I
10.1016/S0034-4877(12)60052-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G(D)(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riecanova and Zajac. Further, any operator generalized effect algebra G(D) (H) possesses an order determining set of generalized states.
引用
收藏
页码:375 / 384
页数:10
相关论文
共 18 条
[1]  
Blank J., 2008, HILBERT SPACE OPERAT
[2]  
Cao H. X., 2012, PREPRINT
[3]  
Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
[4]  
Engelking, 1989, GEN TOPOLOGY REVISED
[5]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352
[6]   Effect Algebras Are Not Adequate Models for Quantum Mechanics [J].
Gudder, Stan .
FOUNDATIONS OF PHYSICS, 2010, 40 (9-10) :1566-1577
[7]  
HEDLIKOVA J, 1996, ACTA MATH U COMENIAN, V45, P247
[8]  
Kalmbach G., 1994, DEMONSTRATIO MATH, V27, P769
[9]  
Kopka F., 1994, Mathematica Slovaca, V44, P21
[10]  
Niederle J., 2012, PREPRINT