Characterization of graphene oxide reduced through chemical and biological processes

被引:28
作者
Boutchich, M. [1 ]
Jaffre, A. [1 ]
Alamarguy, D. [1 ]
Alvarez, J. [1 ]
Barras, A. [2 ]
Tanizawa, Y.
Tero, R. [3 ]
Okada, H. [3 ]
Thu, T. V. [3 ]
Kleider, J. P. [1 ]
Sandhu, A. [3 ]
机构
[1] Univ Paris 06, LGEP, Univ Paris Sud, SUPELEC,CNRS,UMR8507, 11 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[2] Univ Lille 1, CNRS, Institut de Recherche Interdisciplinaire IRI, F-59655 Villeneuve Dascq, France
[3] Toyohashi Univ Technol, Toyohashi Tech Graphene Res Grp, Aichi 4418580, Japan
来源
IRAGO CONFERENCE 2012 | 2013年 / 433卷
关键词
ATOMIC-FORCE MICROSCOPY; SPECTROSCOPY; REDUCTION; SURFACES; DIAMOND; CARBON; FILMS;
D O I
10.1088/1742-6596/433/1/012001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of new materials for transparent electrodes or new heterojunctions made of 2D materials combinations is a very active research topic. Challenges to overcome are the modulation of the optoelectronic properties of such materials to achieve competitive photovoltaic devices. In this work, graphene oxide was reduced into graphene through different chemical (hydrazine, ultraviolet photocatalysis) and biological (microorganisms) processes. We benchmarked the reduction efficiency by probing materials characteristics using various physical characterization techniques. X-ray photoelectron spectroscopy (XPS) analyses were carried out to observe the effectiveness of the reduction processes through the sp(2)/sp(3) content. In addition, the homogeneity of the reduction is investigated on micrometer scale sample with micro Raman mapping and extraction of the ID/IG ratio. Conductive-probe atomic force microscopy (CP-AFM) was employed to investigate the longitudinal conductivity of the different samples. The results show that hydrazine based reduction remains the most efficient. However, the bacterial procedure demonstrated partial reconstruction of the carbon network and reduced the amount of oxygenated functional groups.
引用
收藏
页数:8
相关论文
共 24 条
[21]   Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J].
Stankovich, Sasha ;
Dikin, Dmitriy A. ;
Piner, Richard D. ;
Kohlhaas, Kevin A. ;
Kleinhammes, Alfred ;
Jia, Yuanyuan ;
Wu, Yue ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
CARBON, 2007, 45 (07) :1558-1565
[22]   Microorganism mediated synthesis of reduced graphene oxide films [J].
Tanizawa, Y. ;
Okamoto, Y. ;
Tsuzuki, K. ;
Nagao, Y. ;
Yoshida, N. ;
Tero, R. ;
Iwasa, S. ;
Hiraishi, A. ;
Suda, Y. ;
Takikawa, H. ;
Numano, R. ;
Okada, H. ;
Ishikawa, R. ;
Sandhu, A. .
ASIA-PACIFIC INTERDISCIPLINARY RESEARCH CONFERENCE 2011 (AP-IRC 2011), 2012, 352
[23]   Covalent grafting onto self-adhesive surfaces based on aryldiazonium salt seed layers [J].
Viel, Pascal ;
Le, Xuan Tuan ;
Huc, Vincent ;
Bar, Jennifer ;
Benedetto, Alessandro ;
Le Goff, Alan ;
Filoramo, Arianna ;
Alamarguy, David ;
Noel, Sophie ;
Baraton, Laurent ;
Palacin, Serge .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (48) :5913-5920
[24]   Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J].
Yang, Dongxing ;
Velamakanni, Aruna ;
Bozoklu, Guelay ;
Park, Sungjin ;
Stoller, Meryl ;
Piner, Richard D. ;
Stankovich, Sasha ;
Jung, Inhwa ;
Field, Daniel A. ;
Ventrice, Carl A., Jr. ;
Ruoff, Rodney S. .
CARBON, 2009, 47 (01) :145-152