Synthetic Data Generation for Deep Learning of Underwater Disparity Estimation

被引:0
|
作者
Olson, Elizabeth A. [1 ]
Barbalata, Corina [2 ]
Zhang, Junming [3 ]
Skinner, Katherine A. [1 ]
Johnson-Roberson, Matthew [2 ]
机构
[1] Univ Michigan, Inst Robot, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
来源
OCEANS 2018 MTS/IEEE CHARLESTON | 2018年
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, we present a new methodology to generate synthetic data for training a deep neural network (DNN) to estimate depth maps directly from stereo images of underwater scenes. The proposed method projects real underwater images onto landscapes of randomized heights in a 3D rendering framework. This procedure provides a synthetic stereo image pair and the corresponding depth map of the scene, which are used to train a disparity estimation DNN. Through this process, we learn to match the underwater feature space using supervised learning without the need to capture extensive real underwater depth maps for ground truth. In our results, we demonstrate improved accuracy of reconstruction compared to traditional computer vision feature matching methods and state-of-the-art DNNs trained on synthetic terrestrial data.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Deep Learning for Generating Synthetic Traffic Data
    Kanwal, Summrina
    Nowaczyk, Slawomir
    Rahat, Mahmoud
    Lundstrom, Jens
    Khan, Faiza
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 8, ICICT 2024, 2024, 1004 : 431 - 454
  • [32] A Generalized Deep Learning Method for Synthetic CT Generation
    Kong, L.
    Li, Z.
    Liu, Y.
    Zhang, J.
    Chen, M.
    Zhou, Q.
    Qi, X.
    Deng, X. W.
    Peng, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E472 - E472
  • [33] A Survey of Synthetic Data Generation for Machine Learning
    Abufadda, Mohammad
    Mansour, Khalid
    2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 488 - 494
  • [34] Synthetic Face Image Generation Using Deep Learning
    Sireesha, C.
    Venunath, P. Sai
    Surya, N. Sri
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 231 - 240
  • [35] Deep speed estimation from synthetic and monocular data
    Barros, Joao
    Oliveira, Luciano
    2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 668 - 673
  • [36] Stereoscopic Learning for Disparity Estimation
    Zhang, Zhebin
    Wang, Yizhou
    Jiang, Tingting
    Gao, Wen
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 365 - 368
  • [37] A systematic review and evaluation of synthetic simulated data generation strategies for deep learning applications in construction
    Xu, Liqun
    Liu, Hexu
    Xiao, Bo
    Luo, Xiaowei
    DharmarajVeeramani
    Zhu, Zhenhua
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [38] Learning deep abdominal CT registration through adaptive loss weighting and synthetic data generation
    de Frutos, Javier Perez
    Pedersen, Andre
    Pelanis, Egidijus
    Bouget, David
    Survarachakan, Shanmugapriya
    Lango, Thomas
    Elle, Ole-Jakob
    Lindseth, Frank
    PLOS ONE, 2023, 18 (02):
  • [39] Gender Detection Based on Gait Data: A Deep Learning Approach With Synthetic Data Generation and Continuous Wavelet Transform
    Davarci, Erhan
    Anarim, Emin
    IEEE ACCESS, 2023, 11 : 108833 - 108851
  • [40] Generation of Individualized Synthetic Data for Augmentation of the Type 1 Diabetes Data Sets Using Deep Learning Models
    Noguer, Josep
    Contreras, Ivan
    Mujahid, Omer
    Beneyto, Aleix
    Vehi, Josep
    SENSORS, 2022, 22 (13)