Synthetic Data Generation for Deep Learning of Underwater Disparity Estimation

被引:0
|
作者
Olson, Elizabeth A. [1 ]
Barbalata, Corina [2 ]
Zhang, Junming [3 ]
Skinner, Katherine A. [1 ]
Johnson-Roberson, Matthew [2 ]
机构
[1] Univ Michigan, Inst Robot, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
来源
OCEANS 2018 MTS/IEEE CHARLESTON | 2018年
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, we present a new methodology to generate synthetic data for training a deep neural network (DNN) to estimate depth maps directly from stereo images of underwater scenes. The proposed method projects real underwater images onto landscapes of randomized heights in a 3D rendering framework. This procedure provides a synthetic stereo image pair and the corresponding depth map of the scene, which are used to train a disparity estimation DNN. Through this process, we learn to match the underwater feature space using supervised learning without the need to capture extensive real underwater depth maps for ground truth. In our results, we demonstrate improved accuracy of reconstruction compared to traditional computer vision feature matching methods and state-of-the-art DNNs trained on synthetic terrestrial data.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Synthetic seismic data generation with deep learning
    Roncoroni, G.
    Fortini, C.
    Bortolussi, L.
    Bienati, N.
    Pipan, M.
    JOURNAL OF APPLIED GEOPHYSICS, 2021, 190 (190)
  • [2] Synthetic Data Generation for Deep Learning in Counting Pedestrians
    Ekbatani, Hadi Keivan
    Pujol, Oriol
    Segui, Santi
    ICPRAM: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2017, : 318 - 323
  • [3] SenseGen: A Deep Learning Architecture for Synthetic Sensor Data Generation
    Alzantot, Moustafa
    Chakraborty, Supriyo
    Srivastava, Mani
    2017 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2017,
  • [4] What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
    Mayer, Nikolaus
    Ilg, Eddy
    Fischer, Philipp
    Hazirbas, Caner
    Cremers, Daniel
    Dosovitskiy, Alexey
    Brox, Thomas
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (09) : 942 - 960
  • [5] What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
    Nikolaus Mayer
    Eddy Ilg
    Philipp Fischer
    Caner Hazirbas
    Daniel Cremers
    Alexey Dosovitskiy
    Thomas Brox
    International Journal of Computer Vision, 2018, 126 : 942 - 960
  • [6] Synthetic data generation in motion analysis: A generative deep learning framework
    Perrone, Mattia
    Mell, Steven P.
    Martin, John T.
    Nho, Shane J.
    Simmons, Scott
    Malloy, Philip
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2025, 239 (02) : 202 - 211
  • [7] Generation of Synthetic Data for Honeypot Systems Using Deep Learning Methods
    V. D. Danilov
    T. D. Ovasapyan
    D. V. Ivanov
    A. S. Konoplev
    D. A. Moskvin
    Automatic Control and Computer Sciences, 2022, 56 : 916 - 926
  • [8] A Deep Learning-Based Pipeline for the Generation of Synthetic Tabular Data
    Panfilo, Daniele
    Boudewijn, Alexander
    Saccani, Sebastiano
    Coser, Andrea
    Svara, Borut
    Chauvenet, Carlo Rossi
    Mami, Ciro Antonio
    Medvet, Eric
    IEEE ACCESS, 2023, 11 : 63306 - 63323
  • [9] Next-generation deep learning based on simulators and synthetic data
    de Melo, Celso M.
    Torralba, Antonio
    Guibas, Leonidas
    DiCarlo, James
    Chellappa, Rama
    Hodgins, Jessica
    TRENDS IN COGNITIVE SCIENCES, 2022, 26 (02) : 174 - 187
  • [10] Synthetic Training Data Generation for Fault Detection Based on Deep Learning
    Choi, Woochang
    Pyun, Sukjoon
    GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2021, 24 (03): : 89 - 97