Application of a homogenous patch mean kernel with within-class collaborative representation for hyperspectral imagery classification

被引:4
作者
Wang, Jianing [1 ,2 ]
Jiao, Licheng [2 ]
机构
[1] Shaanxi Xueqian Normal Univ, Dept Comp & Elect Informat, Xian 710100, Peoples R China
[2] Xidian Univ, Joint Int Res Lab Intelligent Percept & Computat, Int Res Ctr Intelligent Percept & Computat,Minist, Key Lab Intelligent Percept & Image Understanding, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
SPARSE REPRESENTATION;
D O I
10.1080/2150704X.2016.1230279
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Spectral-spatial-based classification methods demonstrate satisfying performance for hyperspectral imagery (HSI) classification. In this letter, in order to make full use of spectral and contexture information with simultaneously considering within-class information, we propose a new algorithm for HSI classification based on within-class collaborative representation and column generation (CG) strategy. The proposed accelerated homogeneous patch mean kernel (HPMK) can automatically assign a homogeneous patch for the target sample and represent the similarities between training set and assigned homogeneous patch in kernel feature space based on CG strategy. Further, for including intra-class information and improve classification efficiency, within-class collaborative representation classification (WCRC) is incorporated into new feature space to enhance the classification performance. Experiments on two real HSI data sets demonstrate that the proposed algorithm presents satisfying results in terms of classification accuracy and efficiency.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 24 条
[1]  
Aizerman M. A., 1964, AUTOMAT REM CONTR, V25, pDoc2
[2]  
[Anonymous], 2004, KERNEL METHODS PATTE
[3]  
Bi J., 2004, ACM SIGKDD INT C KNO, P521
[4]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[5]   Kernel-based methods for hyperspectral image classification [J].
Camps-Valls, G ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06) :1351-1362
[6]   Spatio-Spectral Remote Sensing Image Classification With Graph Kernels [J].
Camps-Valls, Gustavo ;
Shervashidze, Nino ;
Borgwardt, Karsten M. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) :741-745
[7]  
Chein-I C., 2007, HYPERSPECTRAL DATA E
[8]   Hyperspectral imagery classification using local collaborative representation [J].
Chen, Jiawei ;
Jiao, Licheng .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (03) :734-748
[9]   Hyperspectral Image Classification via Kernel Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :217-231
[10]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985