Phase-reduction-theory-based treatment of extended delayed feedback control algorithm in the presence of a small time delay mismatch

被引:12
作者
Novicenko, Viktor [1 ]
Pyragas, Kestutis [1 ]
机构
[1] Ctr Phys Sci & Technol, LT-01108 Vilnius, Lithuania
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 02期
关键词
PERIODIC-ORBITS; CHAOS;
D O I
10.1103/PhysRevE.86.026204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The delayed feedback control (DFC) methods are noninvasive, which means that the control signal vanishes if the delay time is adjusted to be equal to the period of a target unstable periodic orbit (UPO). If the delay time differs slightly from the UPO period, a nonvanishing periodic control signal is observed. We derive an analytical expression for this period for a general class of multiple-input multiple-output systems controlled by an extended DFC algorithm. Our approach is based on the phase-reduction theory adapted to systems with time delay. The analytical results are supported by numerical simulations of the controlled Rossler system.
引用
收藏
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 2003, COURIER CORPORATION
[2]   Time-delayed feedback control of unstable periodic orbits near a subcritical Hopf bifurcation [J].
Brown, G. ;
Postlethwaite, C. M. ;
Silber, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (9-10) :859-871
[3]   On time-delayed feedback control of chaotic systems [J].
Chen, GR ;
Yu, XH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06) :767-772
[4]  
Diekmann O., 1995, Applied Mathematical Sciences
[5]   Type I membranes, phase resetting curves, and synchrony [J].
Ermentrout, B .
NEURAL COMPUTATION, 1996, 8 (05) :979-1001
[6]   Characterization of small solutions in functional differential equations [J].
Fiagbedzi, YA .
APPLIED MATHEMATICS LETTERS, 1997, 10 (05) :97-102
[7]   Refuting the odd-number limitation of time-delayed feedback control [J].
Fiedler, B. ;
Flunkert, V. ;
Georgi, M. ;
Hoevel, P. ;
Schoell, E. .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[8]   Towards easier realization of time-delayed feedback control of odd-number orbits [J].
Flunkert, V. ;
Schoell, E. .
PHYSICAL REVIEW E, 2011, 84 (01)
[9]  
Ford N. J., 2002, ALGORITHMS APPROXIMA, P94
[10]  
Ford N.J., 2001, P HERCMA 2001, V1, P101