Transport properties and Kondo correlations in nanostructures: Time-dependent DMRG method applied to quantum dots coupled to Wilson chains

被引:69
作者
da Silva, Luis G. G. V. D. [1 ,2 ]
Heidrich-Meisner, F. [3 ,4 ]
Feiguin, A. E. [5 ,6 ]
Buesser, C. A. [7 ]
Martins, G. B. [7 ]
Anda, E. V. [8 ]
Dagotto, E. [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[3] Univ Aachen, Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany
[4] Forschungszentrum Julich, D-52425 Julich, Germany
[5] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA
[6] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[7] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[8] Pontificia Univ Catolica Rio de Janeiro PUC Rio, Dept Fis, BR-22452970 Rio De Janeiro, Brazil
关键词
electric admittance; hopping conduction; Kondo effect; nanostructured materials; quantum dots; renormalisation;
D O I
10.1103/PhysRevB.78.195317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply the adaptive time-dependent density-matrix renormalization-group method (tDMRG) to the study of transport properties of quantum-dot systems connected to metallic leads. Finite-size effects make the usual tDMRG description of the Kondo regime a numerically demanding task. We show that such effects can be attenuated by describing the leads by "Wilson chains," in which the hopping matrix elements decay exponentially away from the impurity (t(n)proportional to Lambda(-n/2)). For a given system size and in the linear-response regime, results for Lambda>1 show several improvements over the undamped Lambda=1 case: perfect conductance is obtained deeper in the strongly interacting regime and current plateaus remain well defined for longer time scales. Similar improvements were obtained in the finite-bias regime up to bias voltages of the order of the Kondo temperature. These results show that with the proposed modification, the tDMRG characterization of Kondo correlations in the transport properties can be substantially improved, while it turns out to be sufficient to work with much smaller system sizes. We discuss the numerical cost of this approach with respect to the necessary system sizes and the entanglement growth during the time evolution.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Detecting the Kondo screening cloud around a quantum dot [J].
Affleck, I ;
Simon, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2854-2857
[2]   Adaptive time-dependent density-matrix renormalization-group technique for calculating the conductance of strongly correlated nanostructures [J].
Al-Hassanieh, K. A. ;
Feiguin, A. E. ;
Riera, J. A. ;
Busser, C. A. ;
Dagotto, E. .
PHYSICAL REVIEW B, 2006, 73 (19)
[3]   Method to study highly correlated nanostructures:: The logarithmic-discretization embedded-cluster approximation [J].
Anda, E. V. ;
Chiappe, G. ;
Busser, C. A. ;
Davidovich, M. A. ;
Martins, G. B. ;
Heidrich-Meisner, F. ;
Dagotto, E. .
PHYSICAL REVIEW B, 2008, 78 (08)
[4]   Real-time dynamics in quantum-impurity systems: A time-dependent numerical renormalization-group approach [J].
Anders, FB ;
Schiller, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (19)
[5]  
ANDERS FB, ARXIV08033004
[6]   Spin precession and real-time dynamics in the Kondo model: Time-dependent numerical renormalization-group study [J].
Anders, Frithjof B. ;
Schiller, Avraham .
PHYSICAL REVIEW B, 2006, 74 (24)
[7]   Steady-state currents through nanodevices: A scattering-states numerical renormalization-group approach to open quantum systems [J].
Anders, Frithjof B. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[8]   DMRG evaluation of the Kubo formula -: Conductance of strongly interacting quantum systems [J].
Bohr, D ;
Schmitteckert, P ;
Wölfle, P .
EUROPHYSICS LETTERS, 2006, 73 (02) :246-252
[9]   Strong enhancement of transport by interaction on contact links [J].
Bohr, Dan ;
Schmitteckert, Peter .
PHYSICAL REVIEW B, 2007, 75 (24)
[10]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450