Use of artificial intelligence and machine learning for estimating malignancy risk of thyroid nodules

被引:16
|
作者
Thomas, Johnson [1 ]
Ledger, Gregory A. [1 ]
Mamillapalli, Chaitanya K. [2 ]
机构
[1] Mercy Hosp, Dept Endocrinol, 3231 S Natl Ave,Suite 440, Springfield, MO 65807 USA
[2] Springfield Clin, Dept Endocrinol, Springfield, IL USA
关键词
artificial intelligence; machine learning; risk stratification; thyroid nodule; SURGEON-PERFORMED ULTRASOUND; MANAGEMENT; DIAGNOSIS; SYSTEM; CLASSIFICATION; CYTOLOGY;
D O I
10.1097/MED.0000000000000557
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review Current methods for thyroid nodule risk stratification are subjective, and artificial intelligence algorithms have been used to overcome this shortcoming. In this review, we summarize recent developments in the application of artificial intelligence algorithms for estimating the risks of malignancy in a thyroid nodule. Recent findings Artificial intelligence have been used to predict malignancy in thyroid nodules using ultrasound images, cytopathology images, and molecular markers. Recent clinical trials have shown that artificial intelligence model's performance matched that of experienced radiologists and pathologists. Explainable artificial intelligence models are being developed to avoid the black box problem. Risk stratification algorithms using artificial intelligence for thyroid nodules are now commercially available in many countries. Artificial intelligence models could become a useful tool in a thyroidolgist's armamentarium as a decision support tool. Increased adoption of this emerging technology will depend upon increased awareness of the potential benefits and pitfalls in using artificial intelligence.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 50 条
  • [31] PREOPERATIVE PREDICTION OF THE RISK OF MALIGNANCY IN THYROID NODULES
    Kunz, Walter
    Mismar, Ayman
    Wille, George
    Ahmad, Rohana
    Materazzi, Gabriele
    Miccoli, Paolo
    ACTA MEDICA MEDITERRANEA, 2014, 30 (02): : 329 - 334
  • [32] Ultrasonographic risk factors of malignancy in thyroid nodules
    Rios, A.
    Torregrosa, B.
    Rodriguez, J. M.
    Rodriguez, D.
    Cepero, A.
    Abellan, M. D.
    Torregrosa, N. M.
    Hernandez, A. M.
    Parrilla, P.
    LANGENBECKS ARCHIVES OF SURGERY, 2016, 401 (06) : 839 - 849
  • [33] Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology
    Feeny, Albert K.
    Chung, Mina K.
    Madabhushi, Anant
    Attia, Zachi I.
    Cikes, Maja
    Firouznia, Marjan
    Friedman, Paul A.
    Kalscheur, Matthew M.
    Kapa, Suraj
    Narayan, Sanjiv M.
    Noseworthy, Peter A.
    Passman, Rod S.
    Perez, Marco V.
    Peters, Nicholas S.
    Piccini, Jonathan P.
    Tarakji, Khaldoun G.
    Thomas, Suma A.
    Trayanova, Natalia A.
    Turakhia, Mintu P.
    Wang, Paul J.
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) : E007952
  • [34] Introduction to artificial intelligence and machine learning into orthodontics: A review
    Kondody, Rony T.
    Patil, Aishwarya
    Devika, G.
    Jose, Angeline
    Kumar, Ashwath
    Nair, Saumya
    APOS TRENDS IN ORTHODONTICS, 2022, 12 (03) : 214 - 220
  • [35] Radiomics and Artificial Intelligence Can Predict Malignancy of Solitary Pulmonary Nodules in the Elderly
    Elia, Stefano
    Pompeo, Eugenio
    Santone, Antonella
    Rigoli, Rebecca
    Chiocchi, Marcello
    Patirelis, Alexandro
    Mercaldo, Francesco
    Mancuso, Leonardo
    Brunese, Luca
    DIAGNOSTICS, 2023, 13 (03)
  • [36] Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules
    Tandon, Yasmeen K.
    Bartholmai, Brian J.
    Koo, Chi Wan
    JOURNAL OF THORACIC DISEASE, 2020, 12 (11) : 6954 - 6965
  • [37] Risk stratification of indeterminate thyroid nodules by novel multigene testing: a study of Asians with a high risk of malignancy
    Hu, Chunfang
    Jing, Weiwei
    Chang, Qing
    Zhang, Zhihui
    Liu, Zhenrong
    Cao, Jian
    Zhao, Linlin
    Sun, Yue
    Wang, Cong
    Zhao, Huan
    Xiao, Ting
    Guo, Huiqin
    MOLECULAR ONCOLOGY, 2022, 16 (08) : 1680 - 1693
  • [38] Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of Machine Learning-Based Radiomics
    Gu, Jiabing
    Zhu, Jian
    Qiu, Qingtao
    Wang, Yungang
    Bai, Tong
    Yin, Yong
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (06) : 1348 - 1357
  • [39] Risk Stratifying Indeterminate Thyroid Nodules With Machine Learning
    Luong, George
    Idarraga, Alexander J.
    Hsiao, Vivian
    Schneider, David F.
    JOURNAL OF SURGICAL RESEARCH, 2022, 270 : 214 - 220
  • [40] Clinicopathological factors increased the risk of malignancy in thyroid nodules with atypical or follicular lesions of undetermined significance (AUS/FLUS) risk factor of malignancy in thyroid nodule with AUS/FLUS
    Hong, In Ki
    Kim, Jun Ho
    Cho, Young Up
    Park, Shin-Young
    Kim, Sei Joong
    ANNALS OF SURGICAL TREATMENT AND RESEARCH, 2016, 90 (04) : 201 - 206