Direct Laser Writing for Deterministic Lateral Displacement of Submicron Particles

被引:8
作者
Alsharhan, Abdullah T. [1 ]
Stair, Anthony J. [1 ]
Acevedo, Ruben [1 ]
Razaulla, Talha [2 ]
Warren, Roseanne [2 ]
Sochol, Ryan D. [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[2] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
3D printing; additive manufacturing; deterministic lateral displacement; direct laser writing; two-photon polymerization; microfluidics; SEPARATION; ARRAYS;
D O I
10.1109/JMEMS.2020.2998958
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Emerging additive manufacturing (or "three-dimensional (3D) printing") strategies offer the potential to vastly extend the capabilities of established microfluidic technologies. For example, the operational performance of "deterministic lateral displacement (DLD)" - a technique in which micro/nanoposts arrayed inside of a microfluidic channel enable passive transport of target suspended particles away from their initial flow streams - is based on geometric design variables, such as the gap spacing between the arrayed posts (G). For applications that involve DLD processing of submicron-scale particles (e.g., extracellular vesicles), however, achieving the requisite geometric control via conventional microfabrication protocols represents a technically challenging manufacturing hurdle. To bypass such barriers, here we explore the use of two-photon "direct laser writing (DLW)" for additively manufacturing DLD arrays capable of submicron particle handling. Studies of DLW fabrication conditions revealed that increasing the laser power from 22.5 mW to 27.5 mW significantly decreased G from 1.51 +/- 0.04 mu m to 1.02 +/- 0.05 mu m, respectively. Experimental microfluidic testing of 860 nm-indiameter fluorescent particles within the DLW-printed DLD system revealed effective hydrodynamic railing of particles along the angled arrayed microposts, with a lateral displacement of 15.3 +/- 8.6 mu m over a channel length of 500 mu m. These results represent, to our knowledge, the first report of a 3D printed DLD system capable of processing submicron particles, thereby offering a promising foundation for DLW-enabled DLD-based biomedical applications. [2020-0123]
引用
收藏
页码:906 / 911
页数:6
相关论文
共 35 条
[1]  
Alsharhan AT, 2020, PROC IEEE MICR ELECT, P131, DOI [10.1109/MEMS46641.2020.9056155, 10.1109/mems46641.2020.9056155]
[2]   3D microfluidics via cyclic olefin polymer-based in situ direct laser writing [J].
Alsharhan, Abdullah T. ;
Acevedo, Ruben ;
Warren, Roseanne ;
Sochol, Ryan D. .
LAB ON A CHIP, 2019, 19 (17) :2799-2810
[3]   Concentrating Genomic Length DNA in a Microfabricated Array [J].
Chen, Yu ;
Abrams, Ezra S. ;
Boles, T. Christian ;
Pedersen, Jonas N. ;
Flyvbjerg, Henrik ;
Austin, Robert H. ;
Sturm, James C. .
PHYSICAL REVIEW LETTERS, 2015, 114 (19)
[4]   Hydrogel microparticles for biomedical applications [J].
Daly, Andrew C. ;
Riley, Lindsay ;
Segura, Tatiana ;
Burdick, Jason A. .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :20-43
[5]   Deterministic hydrodynamics: Taking blood apart [J].
Davis, John A. ;
Inglis, David W. ;
Morton, Keith J. ;
Lawrence, David A. ;
Huang, Lotien R. ;
Chou, Stephen Y. ;
Sturm, James C. ;
Austin, Robert H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (40) :14779-14784
[6]   Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array [J].
Du, Siqi ;
Drazer, German .
SCIENTIFIC REPORTS, 2016, 6
[7]   3D printed selectable dilution mixer pumps [J].
Gong, Hua ;
Woolley, Adam T. ;
Nordin, Gregory P. .
BIOMICROFLUIDICS, 2019, 13 (01)
[8]   Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterials [J].
Hahn, Vincent ;
Kiefer, Pascal ;
Frenzel, Tobias ;
Qu, Jingyuan ;
Blasco, Eva ;
Barner-Kowollik, Christopher ;
Wegener, Martin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (26)
[9]   Continuous particle separation through deterministic lateral displacement [J].
Huang, LR ;
Cox, EC ;
Austin, RH ;
Sturm, JC .
SCIENCE, 2004, 304 (5673) :987-990
[10]   Critical particle size for fractionation by deterministic lateral displacement [J].
Inglis, DW ;
Davis, JA ;
Austin, RH ;
Sturm, JC .
LAB ON A CHIP, 2006, 6 (05) :655-658