Proton and electron pathways in the bacterial nitric oxide reductase

被引:80
作者
Hendriks, JHM
Jasaitis, A
Saraste, M
Verkhovsky, MI
机构
[1] Univ Helsinki, Inst Biotechnol, Helsinki Bioenerget Grp, Helsinki, Finland
[2] European Mol Biol Lab, D-69012 Heidelberg, Germany
关键词
D O I
10.1021/bi0121050
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electron- and proton-transfer reactions in bacteria] nitric oxide reductase (NOR) have been investigated by optical spectroscopy and electrometry. In liposomes, NOR does not show any generation of an electric potential during steady-state turnover. This electroneutrality implies that protons are taken up from the same side of the membrane as electrons during catalysis. Intramolecular electron redistribution after photolysis of the partially reduced CO-bound enzyme shows that the electron transfer in NOR has the same pathway as in the heme-copper oxidases. The electron is transferred from the acceptor site, heme c, via a low-spin heme b to the binuclear active site (heme b(3)/Fe-B). The electron-transfer rate between hemes c and b is (3 +/- 2) x 10(4) s(-1). The rate of electron transfer between hemes b and b(3) is too fast to be resolved (> 10(6) s(-1)). Only electron transfer between heme c and heme b is coupled to the generation of an electric potential. This implies that the topology of redox centers in NOR is comparable to that in the heme-copper cytochrome oxidases. The optical and electrometric measurements allow identification of the intermediate states formed during turnover of the fully reduced enzyme, as well as the associated proton and electron movement linked to the NO reduction. The first phase (k = 5 x 10(5) s(-1)) is electrically silent, and characterized by the disappearance of absorbance at 433 nm and the appearance of a broad peak at 410 nm. We assign this phase to the formation of a ferrous NO adduct of heme b(3). NO binding is followed by a charge separation phase (k = 2.2 x 10(5) s(-1)). We suggest that the formation of this intermediate that is not linked to significant optical changes involves movement of charged side chains near the active site. The next step creates a negative potential with a rate constant of similar to3 x 10(4) s(-1) and a weak optical signature. This is followed by an electrically silent phase with a rate constant of 5 x 10(3) s(-1) leading to the last intermediate of the first turnover (a rate constant of similar to10(3) s(-1)). The fully reduced enzyme has four electrons, enough for two complete catalytic cycles. However, the protons for the second turnover must be taken from the bulk, resulting in the generation of a positive potential in two steps. The optical measurements also verify two phases in the oxidation of low-spin hemes. Based on these results, we present mechanistic models of NO reduction by NOR. The results can be explained with a trans mechanism rather than a cis model involving Fe-B. Additionally, the data open up the possibility that NOR employs a P450-type mechanism in which only heme b(3) functions as the NO binding site during turnover.
引用
收藏
页码:2331 / 2340
页数:10
相关论文
共 51 条
[1]   Oxygen activation by axial ligand mutants of mitochondrial cytochrome b5:: Oxidation of heme to verdoheme and biliverdin [J].
Avila, L ;
Huang, HW ;
Rodríguez, JC ;
Moënne-Loccoz, P ;
Rivera, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (31) :7618-7619
[2]   IDENTIFICATION OF NITRIC-OXIDE REDUCTASE-ACTIVITY IN RHODOBACTER-CAPSULATUS - THE ELECTRON-TRANSPORT PATHWAY CAN EITHER USE OR BYPASS BOTH CYTOCHROME-C2 AND THE CYTOCHROME-BC1 COMPLEX [J].
BELL, LC ;
RICHARDSON, DJ ;
FERGUSON, SJ .
JOURNAL OF GENERAL MICROBIOLOGY, 1992, 138 :437-443
[3]   ELECTRON-TRANSFER AFTER FLASH-PHOTOLYSIS OF MIXED-VALENCE CARBOXYCYTOCHROME-C OXIDASE [J].
BOELENS, R ;
WEVER, R ;
VANGELDER, BF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 682 (02) :264-272
[4]   Two conserved glutamates in the bacterial nitric oxide reductase are essential for activity but not assembly of the enzyme [J].
Butland, G ;
Spiro, S ;
Watmough, NJ ;
Richardson, DJ .
JOURNAL OF BACTERIOLOGY, 2001, 183 (01) :189-199
[5]   Fast cytochrome bo from Escherichia coli binds two molecules of nitric oxide at CuB [J].
Butler, CS ;
Seward, HE ;
Greenwood, C ;
Thomson, AJ .
BIOCHEMISTRY, 1997, 36 (51) :16259-16266
[6]   The MCD and EPR of the heme centers of nitric oxide reductase from Pseudomonas stutzeri:: Evidence that the enzyme is structurally related to the heme-copper oxidases [J].
Cheesman, MR ;
Zumft, WG ;
Thomson, AJ .
BIOCHEMISTRY, 1998, 37 (11) :3994-4000
[7]   Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16 [J].
Cramm, R ;
Siddiqui, RA ;
Friedrich, B .
JOURNAL OF BACTERIOLOGY, 1997, 179 (21) :6769-6777
[8]   Purification and characterization of the single-component nitric oxide reductase from Ralstonia eutropha H16 [J].
Cramm, R ;
Pohlmann, A ;
Friedrich, B .
FEBS LETTERS, 1999, 460 (01) :6-10
[9]  
DeBoer APN, 1996, EUR J BIOCHEM, V242, P592, DOI 10.1111/j.1432-1033.1996.0592r.x
[10]  
DRACHEV LA, 1974, NATURE, V249, P321, DOI 10.1038/249321a0