FORECASTING OF IONOSPHERIC VERTICAL TOTAL ELECTRON CONTENT (TEC) USING LSTM NETWORKS

被引:0
作者
Sun, Wenqing [1 ,2 ]
Xu, Long [1 ]
Huang, Xin [1 ]
Zhang, Weiqiang [2 ]
Yuan, Tianjiao [3 ]
Chen, Zhuo [4 ]
Yan, Yihua [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen, Peoples R China
[3] Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
来源
PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2 | 2017年
基金
中国国家自然科学基金;
关键词
Ionospheric; TEC; LSTM; Forecast;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ionosphere is an important space environment near the earth. Its disturbance would result in severe propagation effects to radio information system, thus causing bad influences on communication, navigation, radar and so on. The total electron content (TEC) is an important parameter to present the disturbance of ionosphere, so TEC forecast is very meaningful in scientific research field. In this paper, we propose a long short-term memory (LSTM) based model to predict ionospheric vertical TEC of Beijing. The input of our model is a time sequence consisting of the vector of daily TECs and other closely related parameters. The output is TECs of future 24 hours. The result shows the root of mean square (RMS) error of test data can reach 3.50 and RMS error is less than this number during the period of low solar activity. Compared to multilayer perceptron network, LSTM is more promising and reliable to forecast ionospheric TEC.
引用
收藏
页码:340 / 344
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 2008, Advances in neural information processing systems, DOI DOI 10.1007/978-1-4471-4072-6_12
[2]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[3]  
Cho K, 2014, ARXIV14061078, P1724, DOI [DOI 10.3115/V1/D14-1179, 10.3115/V1/D14-1179]
[4]  
Collobert R, 2011, J MACH LEARN RES, V12, P2493
[5]  
Graves A, 2014, PR MACH LEARN RES, V32, P1764
[6]   Application of neural networks to South African GPS TEC modelling [J].
Habarulema, John Bosco ;
McKinnell, Lee-Anne ;
Cilliers, Pierre J. ;
Opperman, Ben D. L. .
ADVANCES IN SPACE RESEARCH, 2009, 43 (11) :1711-1720
[7]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[8]   Ionospheric single-station TEC short-term forecast using RBF neural network [J].
Huang, Z. ;
Yuan, H. .
RADIO SCIENCE, 2014, 49 (04) :283-292
[9]   Solar activity effects of the ionosphere: A brief review [J].
Liu LiBo ;
Wan WeiXing ;
Chen YiDing ;
Le HuiJun .
CHINESE SCIENCE BULLETIN, 2011, 56 (12) :1202-1211
[10]   Acoustic Modeling Using Deep Belief Networks [J].
Mohamed, Abdel-rahman ;
Dahl, George E. ;
Hinton, Geoffrey .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01) :14-22