Intelligent Facial Expression Recognition Using Particle Swarm Optimization Based Feature Selection

被引:0
作者
Robson, Adam [1 ]
Zhang, Li [1 ]
机构
[1] Northumbria Univ, Sch Comp & Informat Sci, Newcastle Upon Tyne, Tyne & Wear, England
来源
2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI) | 2018年
关键词
Particle Swarm Optimization; classification; facial expression recognition; feature selection; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle Swarm Optimization (PSO) has become a popular method of feature selection in classification problems, due to its powerful search capability and computational simplicity. Classification problems, such as facial emotion recognition, often involve data sets containing high volumes of features, not all of which are useful for classification. Redundant and irrelevant features have the potential to negatively impact the performance and accuracy of facial emotion recognition systems. The feature selection process identifies the most relevant features to achieve improved classification performance. While the use of PSO as a feature selection method in facial emotion recognition systems has seen some successes, it is still susceptible to the issue of premature convergence. This work presents seven PSO variants which mitigate against the premature convergence problem through the incorporation of three random probability distributions (Cauchy, Gaussian and Levy). At each iteration of the proposed PSO models, probability distributions are used to increase search diversity and reduce the number of redundant features used for classification. The seven PSO variants presented in this study have demonstrated positive results when tested on real world data sets, outperforming the standard PSO model and other related work within the field.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 50 条
  • [31] Simultaneous Feature Selection and Clustering Using Particle Swarm Optimization
    Swetha, K. P.
    Devi, V. Susheela
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 509 - 515
  • [32] Intelligent facial emotion recognition using moth-firefly optimization
    Zhang, Li
    Mistry, Kamlesh
    Neoh, Siew Chin
    Lim, Chee Peng
    KNOWLEDGE-BASED SYSTEMS, 2016, 111 : 248 - 267
  • [33] Feature Selection with Particle Swarm Optimization for Human Activity Recognition Using Learning Vector Quantization
    Bachtiar, Fitra Abdurrahman
    Arifien, Zainal
    Putra, Adzanil Rachmadi
    Akbar, Pasca Imanuddin
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY, SIET 2021, 2021, : 132 - 138
  • [34] Feature selection based on rough sets and particle swarm optimization
    Wang, Xiangyang
    Yang, Jie
    Teng, Xiaolong
    Xia, Weijun
    Jensen, Richard
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 459 - 471
  • [35] Set based particle swarm optimization for the feature selection problem
    Engelbrecht, Andries P.
    Grobler, Jacomine
    Langeveld, Joost
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 324 - 336
  • [36] Improved salp swarm algorithm based on particle swarm optimization for feature selection
    Ibrahim, Rehab Ali
    Ewees, Ahmed A.
    Oliva, Diego
    Abd Elaziz, Mohamed
    Lu, Songfeng
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 10 (08) : 3155 - 3169
  • [37] Improved salp swarm algorithm based on particle swarm optimization for feature selection
    Rehab Ali Ibrahim
    Ahmed A. Ewees
    Diego Oliva
    Mohamed Abd Elaziz
    Songfeng Lu
    Journal of Ambient Intelligence and Humanized Computing, 2019, 10 : 3155 - 3169
  • [38] An Improved Discretization-Based Feature Selection via Particle Swarm Optimization
    Lin, Jiping
    Zhou, Yu
    Kang, Junhao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT II, 2019, 11776 : 298 - 310
  • [39] Efficient Feature Selection Algorithm Based on Particle Swarm Optimization With Learning Memory
    Wei, Bo
    Zhang, Wensheng
    Xia, Xuewen
    Zhang, Yinglong
    Yu, Fei
    Zhu, Zhiliang
    IEEE ACCESS, 2019, 7 : 166066 - 166078
  • [40] A Particle Swarm Optimization based Feature Selection Approach to Transfer Learning in Classification
    Nguyen, Bach Hoai
    Xue, Bing
    Andreae, Peter
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 37 - 44